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Abstract

The eXtensible Markup Language (XML) is the de-
facto industry standard for exchanging data on the
Web and elsewhere. While the relational model of
data enjoys a well-accepted definition of a key, several
competing notions of keys exist in XML. These have
complementary properties and therefore serve differ-
ent applications domains. In a nutshell, XML keys
allow us to capture important domain semantics in
XML documents and thereby advance data processing
in most applications. In this paper we propose how to
validate XML documents against an expressive class
of XML keys using XML Schema and XQuery, respec-
tively. It is somewhat surprising how simple it is to
express sophisticated notions of XML keys in these
off-the-shelf tools. Experiments show that our simple
validation technique works well for real-world data of
reasonable size. For large-scale data, however, dedi-
cated tools must be developed.

Keywords: Key, Performance, Schema, Semantics,
Query, Validation, XML

1 Introduction

The eXtensible Markup Language (XML) (Bray et al.
2006) has evolved to become the de-facto industry
standard for the sharing and integration of data. This
is mainly due to the syntactic flexibility by which end
users can produce XML documents. Unfortunately,
this flexibility is an inhibitor when it comes to check-
ing XML documents for their validity with respect to
application semantics. XML schema languages such
as document type definitions and the standard XML
Schema provide rich constructs to impose many struc-
tural constraints (Abiteboul et al. 2000, Arenas &
Libkin 2004, 2005, Buneman et al. 2000, Buneman,
Fan, Siméon & Weinstein 2001, Buneman et al. 2002,
Deutsch & Tannen 2005, Fan & Siméon 2003, Fan
2005, Hartmann & Link 2003, 2009, Vianu 2003, Vin-
cent et al. 2004, 2007), but have significant shortcom-
ings when it comes to semantics. Keys, as proposed
by XML Schema, are not naturally defined and show
provably bad computational properties (Arenas et al.
2002, 2008). However, the importance of keys for
XML has been recognized by industry and academia.
Keys provide the means for identifying data items in
an unambiguous way, which is essential for retrieving
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and updating data. More importantly, unlike rela-
tional data (Abiteboul et al. 1995, Thalheim 1991) in
which there is a unique and well-accepted concept of
a key, for XML data (Hartmann et al. 2007) there are
many different ways of defining the semantics of XML
keys, each with its own advantages and disadvantages.
Therefore, over the past few years, the research liter-
ature has proposed alternative key languages (Bune-
man et al. 2002, Hartmann & Link 2007, Hartmann
et al. 2007, Karlinger et al. 2009) which are reminis-
cent of keys from databases, do not require an XML
Schema definition, and have provably good computa-
tional properties (Hartmann & Link 2007, 2009).

Figure 1 shows an XML data tree which represents
two article nodes with their sub-nodes. The key value
identifies the article node, because the key sub-nodes
of the different article nodes have different values. In
contrast, an article node cannot be identified in the
entire tree by its child node author, because the same
author has written more than one article. However,
the article node can indeed be identified by its child
author node together with its child title node. That
means, for each article node, different child nodes of
article must differ on their author or title sub-node
value. The XML keys in this simple example have
a different expressivity than those proposed in XSDs
or DTDs (Hartmann et al. 2007, Bray et al. 2006,
Thompson et al. 2004).

(Buneman et al. 2002) have introduced an alter-
native language to specify XML keys, which has a
natural semantics, does not require an XML Schema
definition and exhibits excellent computational prop-
erties (Hartmann & Link 2009). For example, the
semantics of the keys above can be specified as

1. (.,/article,{key}),
2. (.,/article,{author}), and

3. (.,/article,{author,title})
The main body of research work on XML keys

has been devoted to the computational properties of
their associated consistency and implication problems
(Arenas et al. 2008, Buneman et al. 2003, Hartmann
& Link 2009, 2010, Karlinger et al. 2009), the im-
portant problem of validating XML keys has received
only little attention so far (Chen et al. 2002, Liu et al.
2004, 2005). The validation problem for a class of
XML keys decides whether a given XML document
satisfies a given XML key from that class. For exam-
ple, the XML data tree from Figure 1 is valid with
respect to the first and with respect to the third key
above, but invalid with respect to the second key. The
validation problem is important for a number of rea-
sons. In fact, it allows us to validate whether a given
XML document respects the semantics of its applica-
tion domain encoded by a given XML key. This is the



Figure 1: XML data tree

basis for modeling application data correctly, ensur-
ing higher levels of data quality, and enabling other
applications to process data more efficiently. For or-
ganizations this might mean an increase in productiv-
ity, less resource requirements on data cleaning, and
improvements for data-driven decision making. How-
ever, XML key validation poses a challenge since the
semantics of the XML keys, as proposed originally by
(Buneman et al. 2002), is expressive, and it is there-
fore not obvious how to propose good practical solu-
tions to the validation problem.

1.1 Contribution

Our research makes two main contributions. Firstly,
it is shown how the validation problem for XML keys
as proposed by (Buneman et al. 2002) can be de-
cided by evaluating an XQuery on the given docu-
ment. For this, the semantics of the XML keys is
encoded as a simple conditional statement in XQuery
that takes advantage of nested quantified expressions
such as SATISFIES, SOME, and ALL, as well as the
DEEP-EQUAL function that essentially tests whether
two given nodes of an XML data tree form the roots
of isomorphic trees. It is stressed that our XQuery
condition can also express XML keys that were not
included in the original proposal by (Buneman et al.
2002) and any other follow-up work. Indeed, the
XQuery condition allows us to exploit any XPath axes
in the semantics and validation of XML keys. It is fur-
ther demonstrated how to decide the validation prob-
lem for this class of XML keys with the help of an
assertion in XML Schema 1.1. Our first contribution
therefore enables organizations to validate their doc-
uments against expressive application semantics by
off-the-shelf tools. This is a somewhat surprisingly
simple and easy-to-use solution.

Secondly, we investigate how well our easy-to-use
validation method with XQuery performs on real-
world data sets. For this purpose, we conduct per-
formance tests on fragments of an astronomical data
set with growing sizes of up to 23MB, as well as the
DBLP data set with growing sizes of up to 127MB.
The experiments are applied to several fragments of
XML keys that exploit different XPath axes. The
experiments show that our validation method works
efficiently on modestly-sized XML documents, while
larger XML documents require a long time to be val-
idated against simple XML keys. This is a conse-
quence of directly encoding the original nested quan-
tifier semantics of XML keys in the XQuery condition.
It is future research to trade-in the simplicity of this
XQuery condition against designated validation im-
plementations that scale better to larger data sets.

1.2 Organization

The remainder of the paper is organized as follows.
The small body of previous research on XML key

validation is reviewed in Section 2. The XML data
model is defined in Section 3. The keys proposed by
XML Schema are discussed in Section 4, and Section 5
provides an overview of proposals from the academic
community. In Section 6, we present our proposal of
using XQuery to validate XML documents against the
class of XML keys from (Buneman et al. 2002). The
performance evaluation of our proposal is presented
in Section 7. An example illustrates in Section 8 how
assertions of XML Schema 1.1 can be used to validate
XML documents against XML keys.

2 Related Work

Previous work on XML keys is discussed in detail in
Sections 4 and 5, where we review the W3C recom-
mendation for XML keys as well as various proposals
from academia. In this section, we only focus on the
validation problem of XML keys.

All previous work on XML key validation has de-
veloped designated algorithms. These are therefore
different from our proposal, which simply encodes the
semantics of an expressive class of XML keys (Bune-
man et al. 2002) within XQuery and XML Schema
1.1, respectively. In contrast to all other works, our
proposal also supports XPath axes other than the
ones used by (Buneman et al. 2002).

(Chen et al. 2002) present an XML key constraint
validator based on SAX. Their tool, called XKvalida-
tor also considers the class of XML keys from (Bune-
man et al. 2002), but does not support further XPath
axes. The validator can be used both for bulk-loading,
i.e. one pass over the entire document, as well as for
incremental checking, i.e. XML updates to the docu-
ment can be processed and checked against a persis-
tent key index for the file.

(Abrão et al. 2004) and (Bouchou et al. 2003) also
consider the keys of (Buneman et al. 2002). They in-
troduce a method for building an XML constraint val-
idator from a given set of schema, key and foreign key
constraints. The XML constraint validator obtained
by their method is a bottom-up tree transducer that is
used not only for one-pass checking of the correctness
of an XML document but also for incrementally vali-
dating updates over this document. In this way, both
the verification from scratch and the update verifica-
tion are based on regular (finite and tree) automata,
making the whole process efficient.

Since the XML keys themselves are expressed in
XPath and the structure checking is a well-solved
problem, the validation using XPath based on DOM
and the structure checking is a principal motivation
for the work by (Liu et al. 2004, 2005). They propose
an algorithm that generates a key value document and
present how such a document and its schema can be
designed to check whether predefined key constraints
are satisfied. They present a method that supports
the incremental validation of XML keys by the incre-
mental maintenance of their key value document.



3 XML Data Model

Researchers and practitioners agree that in terms of
storing, querying and processing XML data in its na-
tive format, XML requires commensurate support by
DBMS and data management tools. It is a challenge
to precisely describe desirable properties of XML data
and provide methods and facilities that can efficiently
conclude, validate, or enforce such properties, because
XML has an inherent syntactic flexibility and hierar-
chical structure (Fan 2005, Fan & Libkin 2002, Fan
& Siméon 2003, Suciu 2001, Vianu 2003).

Integrity constraints restrict data stores such as
XML documents or XML databases to those con-
sidered meaningful for some application of interest.
Specifying and enforcing integrity constraints helps to
ensure that the data stays valid and does not deviate
from reality (Fan 2005). Keys are one of the most fun-
damental classes of integrity constraints. The impor-
tance of keys for XML has been recognized by indus-
try and academia. Keys provide the means for iden-
tifying data items in an unambiguous way, an abil-
ity that is essential for retrieving and updating data.
For relational data, keys are straightforward to define,
convenient to use and simple to reason about. For
XML data however, the story is more cumbersome
due to the particularities of the XML data model.
Over the past few years several notions have been
proposed and discussed in the research community,
including the definitions that have been introduced
into XML Schema (Thompson et al. 2004). While
this has established an industry standard for specify-
ing keys, (Arenas et al. 2002) have shown the com-
putational intractability of the associated consistency
problem, that is, whether there exists an XML doc-
ument that conforms to a given DTD or XSD and
satisfies the specified keys.

In Figure 1, an example of a reasonable key is that
the key-value identifies the article node. That is, the
key subnodes of different article nodes must have dif-
ferent values. In contrast, an author cannot be iden-
tified in the entire tree by its firstname and lastname
subnodes since the same author can write more than
one article. However, the author can indeed be iden-
tified by its firstname and lastname subnodes in rela-
tion to the article node. That is, for each individual
article node, different author subnodes must differ on
their firstname or lastname subnode value. Clearly,
the expressiveness of such keys depends on the means
that are used to select nodes in a tree, and by the se-
mantics of the associated node selection queries (Fan
2005, Fan & Libkin 2002, Fan & Siméon 2003, Suciu
2001, Vianu 2003).

3.1 Trees and Paths in XML

It is common to represent XML data by ordered,
node-labelled trees. Such a representation is used in
DOM (Apparao et al 1998), XPath (Clark & DeRose
1999), XQuery (Chamberlin et al. 2010), XSLT (Kay
2009), and XML Schema (Thompson et al. 2004).
Figure 1 shows an example of XML data represented
as a tree. Non-leaves are always of type E for ele-
ment, while leaves are either of type A for attribute
(when they have a name starting with @ and a string
underneath) or of type S for string (PCDATA). In
the literature, several variations of the tree model for
XML data have been used. All of them simplify the
XML standard (Bray et al. 2006) by concentrating
on its major aspects. Here we follow the approach
taken in (Buneman et al. 2002, 2003). We assume
that there are three mutually disjoint non-empty sets
E, A, and S = {S}. In the sequel, E will be used

for element names, A for attribute names, and S for
denoting text. We further assume that these sets are
pairwise disjoint, and put L = E ∪A ∪ S. We refer
to the elements of L as labels.

An XML tree is a 6-tuple T = (V, lab, ele, att, val,
r), where V denotes a set of nodes; lab is a mapping
V → L assigning a label to every node in V ; a node
v in V is called an element (E ) node if lab(v) ∈ E,
an attribute (A) node if lab(v) ∈ A, and a text (S)
node if lab(v) = S; ele and att are partial mappings
defining the edge relation of T : for any node v in V ,
if v is an element node, then ele(v) is a list of element
and text nodes in V and att(v) is a set of attribute
nodes in V ; if v is an attribute or text node then
ele(v) and att(v) are undefined; for a node v ∈ V ,
each node w in ele(v) or att(v) is called a child of v,
and we say that there is an edge (v,w) from v to w in
T. Let ET denote the set of edges of T, and let E∗T
denote the transitive closure of ET . val is a partial
mapping assigning a string to each attribute and text
node: for any node v in V, if v is an A or S node then
val(v) is a string, and val(v) is undefined otherwise;
and then r is the unique and distinguished root node
of T.

A path expression is a finite sequence of zero or
more symbols from some alphabet M. The unique
sequence of zero symbols is called the empty path
expression,denoted by ε, and a dot (.) is used to
denote the concatenation of path expressions. The
set of all path expressions over M, with the binary
operation of concatenation and the identity ε, form a
free monoid. We are in particular interested in path
expressions over the alphabet L which we call simple.
A simple path p of an XML tree T is a sequence of
nodes v0, . . . , vm where (vi−1, vi) is an edge for i =
1, . . . ,m. We call p a simple path from v0 to vm,
and say that vm is reachable from v0 following the
simple path p. The path p gives rise to a simple path
expression lab(v1), . . . , lab(vm), which we denote by
lab(p). An XML tree T has a tree structure: for each
node v of T , there is a unique simple path from the
root r to v (Hartmann et al. 2007).

3.2 Value Equality of XML Nodes

Equality is essential to the definition of keys, in other
words, equality of the values associated with nodes is
crucial to define the semantics of keys. In general, two
nodes u and v are value equal in an XML tree T, if
they have the same label. Moreover, if two nodes are
string nodes, attribute nodes, or element nodes, they
are value equal if they have the same string value or
their children are pairwise value equal. More formally,
two nodes u, v ∈ V are value equal, denoted by u =v
v, if and only if the subtrees rooted at u and v are
isomorphic by an isomorphism that is the identity on
string values. Therefore, two nodes u and v are value
equal (Buneman et al. 2002, Hartmann & Link 2009),
if:

1. lab(u) = lab(v),

2. if u, v are attribute node or string nodes, then
val(u) = val(v),

3. if u, v are element nodes, then (i) if att(u) =
{a1, . . . , am}, then att(v) = {a′1, . . . , a′m} and
there is a permutation π on {1, . . . ,m} such
that ai =v a′π(i), for i = 1, . . . ,m, and (ii) if

ele(u) = [u1, . . . , uk], then ele(v) = [v1, . . . , vk]
and ui =v vi for i = 1, . . . , k.

If we look at Figure 1, the second and third author
node (based on the document order) are value equal.



Note that the notion of value equality takes the docu-
ment order of the XML tree into account. We remark
that =v defines an equivalence relation on the node
set of an XML tree.

To summarize, assuming there are two subsets U
and W of V . We call U and W value-equal if there
exists a bijection β : U →W such that u =v β(u) for
all u ∈ U . The value intersection U ∩vW of U and W
consists of all pairs (u,w) ∈ U ×W such that u =v w
holds, and the value difference U −vW consists of all
nodes in U that are not value equal to any node in
W (Hartmann et al. 2007).

3.3 Queries to Select XML Nodes

A node selection query Q defines a mapping JQKT :
V → 2V that assigns every node v ∈ V a subset of
V , called the selected nodes, that may be seen as the
result of executing the query at node v. For node
selection queries we can define operations like union,
intersection, concatenation, reverse, absolution and
the identity as follows, cf. (Clark & DeRose 1999):

JQ1 ∪Q2KT (v) := JQ1KT (v) ∪ JQ2KT (v)

JQ1 ∩Q2KT (v) := JQ1KT (v) ∩ JQ2KT (v)

JQ1.Q2KT (v) := {x : w ∈ JQ1KT (v), x ∈ JQ2KT (w)}
JQRKT (v) := {x : v ∈ JQKT (x)}
JQAKT (v) := JQKT (r)

JεKT (v) := {v}

Depending on the particular application, one aims to
identify query languages that enable users to retrieve
as much data as possible that is relevant for the un-
derlying application domain, yet sufficiently simple
to process the queries efficiently. A problem that has
been widely studied in the literature due to its imme-
diate practical relevance is the containment problem.
A node selection query Q is said to be contained in
a node selection query Q′, denoted by Q v Q′, if for
every XML tree T and every node v ∈ V we have
that JQKT (v) is a subset of JQ′KT (v). Two queries are
(semantically) equivalent, denoted by Q ≡ Q′, if they
contain one another. The containment problem for
a class of queries asks to decide containment, while
the equivalence problem asks to decide equivalence
for the query class under inspection.

It remains to find a convenient way to express use-
ful node selection queries that can be evaluated effi-
ciently. In the literature regular languages of path
expressions have been widely used for this purpose.
Alternatively, XPath expressions (Clark & DeRose
1999) are of course popular, too. For recent tractabil-
ity results on the containment and equivalence prob-
lem for regular path languages and XPath fragments
we refer to (Benedikt et al. 2005, Deutsch & Tan-
nen 2005, Gottlob et al. 2005, Miklau & Suciu 2004,
Neven & Schwentick 2006, Wood 2003).

4 XML Keys

In this section we set out a framework that compares
different notions of XML keys. We then discuss the
XML key proposal by XML Schema.

Keys are an essential part of database design: they
are fundamental to data models and conceptual de-
sign; they provide the means by which one tuple in
a relational database may refer to another tuple; and
they are important in update, for they enable us to

guarantee that an update will affect precisely one tu-
ple. More philosophically, if we think of a tuple as
representing some real-world entity, the key provides
an invariant connection between the tuple and the
entity (Abiteboul et al. 1995, Thalheim 2000).

There are two elements in defining a key: one is
a set, which is the set of tuples identified by a re-
lation name in relational databases; the other is the
’attributes’, which is a collection of column names
in relational terminology, which uniquely identify el-
ements in the set.

Therefore, an XML key is a triple σ = (C,Q,F)
where C and Q are node selection queries, and F =
{F1, . . . , Fk} is a finite set of node selection queries.
Adapting the terminology of (Thompson et al. 2004),
C is called the context, Q the selector and F1, . . . , Fk
the fields of the key σ. Given an XML tree T , JCKT (r)
is called the context node set. For any context node
u, JQKT (u) is called the target node set, and for any
target node v and every i = 1, . . . , k we call JFiKT (v)
a key node set. For example, in the XML key:

(article, author, {firstname, lastname})
article is the context, author is the target, and first-
name and lastname are the fields of the key. An XML
tree T satisfies an XML key σ = (C,Q,F) if for any
target nodes u, v that belong to the same target node
set it holds that if for all i = 1, . . . , k their key node
sets JFiKT (u) and JFiKT (v) agree, then the nodes u
and v themselves agree (Hartmann et al. 2007).

4.1 Notions of Node Agreement

Node agreement can be classified into the following
criteria (Hartmann et al. 2007). Those criteria are
based on different proposals for defining agreement of
target nodes and of key node sets. For the agreement
of two key node sets:

(Ka) JFiKT (u) and JFiKT (v) are equal,

(Kb) JFiKT (u) and JFiKT (v) have non-empty intersec-
tion,

(Kc) JFiKT (u) and JFiKT (v) are value equal,

(Kd) JFiKT (u) and JFiKT (v) have non-empty value in-
tersection.

For the agreement of two target nodes u and v:

(Ta) u = v, that is, u and v are identical nodes

(Tb) u =v v, that is, u and v are value equal nodes.

Moreover, one might want to combine these require-
ments with one or more of the following criteria for
some or all i = 1, . . . , k:

(Tc) both JFiKT (u) and JFiKT (v) are non-empty,

(Td) both JFiKT (u) and JFiKT (v) contain at most one
node,

(Te) both JFiKT (u) and JFiKT (v) contain only at-
tribute or text nodes.

4.2 Strong Keys in XML Schema

We treat keys as defined by XML Schema (Thompson
et al. 2004). For such a key σ to hold it is necessary
that for each target node v each of the key fields Fi
with i = 1, . . . , k selects exactly one key node. This
prerequisite calls for uniqueness and existence. Bune-
man et. al. (Buneman, Davidson, Fan, Hara & Tan



2001, Buneman et al. 2003) call a key with such a
prerequisite strong.

XML Schema (Thompson et al. 2004) uses crite-
rion (Kd) above for the agreement of key node sets.
Note that if the prerequisite holds then criteria (Kc)
and (Kd) coincide, and so do criteria (Ka) and (Kb).
Moreover, this prerequisite imposes a condition on
each target node. Even if there is only a single tar-
get node v in an XML tree T the key will be violated
when one of the key node sets JFiKT (v) is not a single-
ton set. To avoid that in such a case the target node
v agrees with itself one chooses criteria (Ta,Tc,Td)
for the agreement of target nodes. Further, criterion
(Te) accounts for the restriction of value equality to
string equality in XML Schema. XML Schema further
defines a weaker version of the previous key notion,
called unique. It requires that the keys’ paths exist
and are unique; that is, nJPiK contains exactly one
node for 1 ≤ i ≤ n. The key paths constrain the tar-
get set as follows: Take any two nodes (n1, n2) ∈ JQK
and consider the pairs of nodes found by following a
key path Pi from n1 and n2. If all such pairs of nodes
are value-equal, then the nodes n1 and n2 represent
the same node (Hartmann et al. 2007).

4.3 Absolute and Relative Keys

A key of the form (ε,Q,F) is named absolute. This
means the context node is always the root node. In
contrast, if the context node is any other node, then
we treat it as relative key. It should be noted that ev-
ery relative key can be converted to an absolute key
by transforming the key context C into an additional
key field with node agreement criterion (Kb) (Hart-
mann et al. 2007) above: It can be shown that an
XML tree satisfies (C,Q,F) if and only if it satisfies
(ε, C.Q,F ∪ {CA ∩ QR}). However, the latter repre-
sentation of the key might be less intuitive in many
cases (Hartmann et al. 2007).

5 Alternative Notions for XML Keys

In this section we discuss different proposal of XML
keys from the research literature. It is important to
note that there are several different notions, each ac-
commodating a different expressivity. This is differ-
ent from the relational model of data where the notion
of a key is well-accepted. The variety of XML keys ad-
dresses different application semantics and domains.

5.1 Keys proposed by Buneman et al.

The key notion proposed by (Buneman et al. 2002) is
flexible in the choice of an appropriate query language
(Hartmann et al. 2007). (Buneman et al. 2002) study
and examine the absolute and relative keys that do
not have the uniqueness and existence prerequisite of
the strong key definition in XML Schema (Thompson
et al. 2004). The reason is that strong keys are not
always finitely satisfiable. That is, there are strong
keys for which there is no finite XML tree to satisfy
them. Based on the above assumption, (Buneman
et al. 2002) define keys using criteria (Kd) for the
agreement of key node sets, and only (Ta) for the
agreement of target nodes.

For node selection queries they define the path lan-
guage PE that consists of all path expressions over
the alphabet L ∪ { , ∗}, with the binary operation
of concatenation and the empty path expression ε as
identity. Here, and ∗ are symbols not in L that
serve as the single symbol wild-card and the variable

length wild-card. The semantics of path expressions
from PE is defined by:

J`KT (v) := {w : (v, w) ∈ ET , labT (w) = `}
J KT (v) := {w : (v, w) ∈ ET }

J ∗KT (v) := {w : (v, w) ∈ E∗T }

The semantics of the concatenation operator and of ε
is defined as for general node selection queries. When
comparing PE and XPath, one observes the equiva-
lences ε ≡ . and ≡ ∗ and ∗ ≡ .//. and Q1.Q2 ≡
Q1/Q2 and Q1//Q2 ≡ Q1.

∗.Q2 showing that PE
corresponds to the XPath fragment XP (., /, ∗, //). In
(Buneman et al. 2002, Hartmann et al. 2007) PE ex-
pressions are used for the context C and the key se-
lector Q, while simple path expressions are used for
the key fields F1, . . . , Fk. At the end of (Buneman
et al. 2002, Hartmann et al. 2007) the use of PE ex-
pressions for the key fields is briefly discussed based
on a more restrictive definition of value intersection
for key node sets: The limited value intersection

JFiKT (u) ∩lv JFiKT

of key node sets JFiKT (u) and JFiKT (v) consists of all
pairs (x, y) ∈ JFiKT (u) × JFiKT (v) such that x =v y
holds and for which a simple path expression F v Fi
with x ∈ JFiKT (u) and y ∈ JFiKT (v) exists.

As an example consider the XML tree in Figure 1
and suppose we replace the author nodes by firstau-
thor and secondauthor nodes. Suppose further we
have a key (ε, ∗.article, ∗.lastname) with the article
nodes as targets. The field ∗.lastname would then
pick two lastname nodes for the first article node, and
one lastname for the second article node. The value
intersection of the two key node sets would contain
the two lastname nodes for Lindsay as a pair, while
the limited value intersection would be empty.

(Buneman, Davidson, Fan, Hara & Tan 2001,
Buneman et al. 2003, Hartmann et al. 2007) study the
axiomatisability and implication problem of the keys
introduced in (Buneman et al. 2002). This time they
restrict themselves to the path language PL consist-
ing of all path expressions over the alphabet L∪{ ∗}.
PL expressions are used for the key context C, the
key selectorQ and the key fields F1, . . . , Fk. In (Bune-
man, Davidson, Fan, Hara & Tan 2001) agreement of
key node sets applies limited value intersection, while
in (Buneman et al. 2003) it applies the original defi-
nition of value intersection.

All in all, (Buneman et al. 2002) define a key ϕ
as an expression (Q, (Q′, Q1, ..., Qk)) where Q,Q′, Qi
are PL expressions such that Q.Q′.Qi is a valid PL
expression for all i = 1, . . . , k. Herein, Q is called
the context path, Q′ is called the target path, and
Q1, ..., Qk are called the key paths of ϕ. An XML tree
T satisfies the key (Q, (Q′, Q1, ..., Qk)) if and only if
for any node q ∈ JQK: and for any nodes q′1, q

′
2 ∈ qJQ′K

such that there are nodes xi ∈ q′1JQiK, yi ∈ q′2JQiK
with xi =v yi for all i = 1, . . . , k, then q′1 = q′2 That
is, ∀q ∈ JQK, ∀q′1, q′2 ∈ qJQ′K ∧

1≤i≤k

q′1JQiK ∩v q′2JQiK 6= ∅

⇒ q′1 = q′2

5.2 Keys defined by Arenas et al.

(Arenas et al. 2002, 2008) are motivated by the key
notion of XML Schema, and study absolute and rel-
ative keys. The study focuses on strong keys and



Figure 2: XQuery Template for XML Key Validation

let $cp := ‘context path’
let $keys := (‘key1’,‘key2’,‘key3’,...)
let $doc := ‘XML Document’
let $tp := ‘target path’ return
if (

some $c in doc($doc)/saxon:evaluate($cp) satisfies (
some $t1 in $c/saxon:evaluate($tp), $t2 in $c/saxon:evaluate($tp) satisfies (

not($t1 is $t2) and (
every $k in $keys satisfies (

some $k1 in $t1/saxon:evaluate($k), $k2 in $t2/saxon:evaluate($k) satisfies (
fn:deep-equal($k1,$k2)

)
)
)

)
)

) then ‘key is violated’
else (‘key is valid’)

strong foreign keys. The context C and selector Q
use path expressions ∗.` with ` ∈ E, and key fields
F1, ..., Fk with labels from A, where k ≥ 1. In terms
of node agreement, for target nodes they choose cri-
terion (Ta), and for the key node, they apply cri-
terion (Kd) for all i = 1, ..., k (Arenas et al. 2002,
2008). Furthermore, key fields are limited to labels of
attributes whose existence is guaranteed by a DTD
or XML Schema. Meanwhile, the uniqueness of at-
tributes is guaranteed by the XML standard (Bray
et al. 2006). Therefore, Fi(v) is a singleton set for
every i = 1, . . . , k, such that criteria (Tc, Td, Te) for
the agreement of target nodes are automatically sat-
isfied. In addition, (Arenas et al. 2008) further study
absolute keys with a selector Q of the form Q′.` where
` ∈ E and Q′ denotes a regular expression over the al-
phabet E∪{ }. Their discussion is extended to abso-
lute keys with path expressions as permitted by XML
Schema (Arenas et al. 2002, Thompson et al. 2004).
They show that the consistency problem is NP -hard
for strong keys with k = 1 under non-recursive and
no-star DTDs.

5.3 Keys defined by Yu and Jagadish

By studying data redundancies in XML, Yu and Ja-
gadish (Yu & Jagadish 2008) focus on developing a
partition based algorithm for discovering certain func-
tional dependencies, which includes keys. Meanwhile,
Yu and Jagadish define absolute keys for XML and
their key notion has some similarity with the key from
(Yu & Jagadish 2008). They have a different view
on value equality, that is, they ignore the node or-
der in the XML document; therefore, value equal-
ity in Yu and Jagadish’s key definition is different to
(Buneman et al. 2002) key definition, if the order of
child elements is different. In addition, for the agree-
ment of target nodes Yu and Jagadish choose criterion
(Ta), and they choose criterion (Kc) for the agree-
ment of key node sets for all i = 1, . . . , k. Moreover,
they use simple path expressions for selecting keys
and key field expressions from the XPath fragment
XP (., /, ..), where key fields may use simple upward
steps (Yu & Jagadish 2008).

6 Encoding XML Key Semantics in XQuery

In this section we present the first main contribu-
tion of our paper, which is a general XQuery tem-
plate for the validation of XML documents against
XML keys, as originally proposed by (Buneman et al.
2002). However, our template can also be applied
to more expressive keys that feature expressions such
as following, preceding, and ancestor axes, filters and
disjunctions.

The core idea of this paper is to decide the val-
idation problem for XML keys with the help of
W3C-recommended XML standards, that is, XQuery
(Chamberlin et al. 2010) and XML Schema 1.1
(Thompson et al. 2012). The benefits of this solu-
tion are potentially huge. As the XML keys, pro-
posed by (Buneman et al. 2002), have been shown
to naturally capture important application semantics,
the means to actually validate XML documents effec-
tively and efficiently would make it possible to apply
these keys in everyday practice. This has important
consequences as data exchange and integration be-
come more effective with more consistent XML docu-
ments and as costs for data cleaning are reduced, for
examples.

It is striking that the rather natural, yet com-
plex, semantics of XML keys can almost directly
be encoded with XQuery. More precisely, a key is
assumed to be given in the format (c, t, k1, . . . , kn)
where c denotes the context path of the key, t de-
notes the target path of the key, and k1, . . . , kn denote
the key paths of the key. The key (c, t, k1, . . . , kn)
is violated by the given XML document ‘doc.xml’
if and only if the following is true: there is some
$c in doc(‘doc.xml’)/$c and there are some $t1, $t2
in $c/$t such that $t1 6= $t2 and for every $k in
k1, . . . , kn there exist some $v1 in $t1/$k and some
$v2 in $t2/$k such that $v1 and $v2 are deep-equal.
The above logic for validating the semantics of an
XML key, as proposed by (Buneman et al. 2002), has
been implemented in XQuery, as shown in Figure 2.
For this purpose, the input of the validation problem
is encoded in the form of four distinct variables. The
context path of the key is stored in the variable $cp,
the target path of the key in the variable $tp, and
the key paths of the key are stored in the variable
$keys. Finally, the file of the given XML document
is stated in the variable $doc. The XQuery template
is of the form IF condition holds THEN the key is vi-



olated ELSE the key is satisfied. The condition itself
is a nested quantified expression that directly follows
the semantics of the XML keys described above. In
particular, it relies on the availability of such expres-
sions as ‘some’, ‘satisfies’, ‘not’, and ‘every’, as well
as the XQuery function ‘deep-equal’ that implements
value-equality. The SAXON function ‘evaluate’ is nec-
essary to create the XPath node selection queries at
run-time. The normal XPath operator is not able to
identify this string value and convert it to the actual
node in the XML document. Therefore, we need to
access the XML node dynamically. Saxon:evaluate
is one of the extended functions in Saxon, which al-
lows XPath expressions to be constructed and evalu-
ated dynamically at run-time.

7 Performance Evaluation

In this section we present the second main contribu-
tion of this research. So far, we have demonstrated
that semantics of expressive XML key notions can be
validated effectively with XQuery. We will now mea-
sure how efficient the validation technique performs
on differently sized real-world XML documents and
with respect to XML keys that have different degrees
of expressiveness. Firstly, we describe the feature
of the real-world XML documents and the classes of
XML keys we consider for the experiments. Secondly,
we present and discuss the results of our performance
analysis.

7.1 Input and Environment

Real-world XML documents. We applied our
performance tests to various fragments of two real-
world data sets, whose features we briefly describe
now.

NASA is a set of astronomical data in XML for-
mat, converted from legacy flat-file format. It has
been available to the public since 2001. It is not as-
sociated with a DTD. The size of this document is 23
Megabytes. When compared to the other data set,
DBLP, that is used in this study, NASA has more
depth and uses more attributes. The data set con-
tains 476,646 element nodes, 56,317 attribute nodes,
has a maximum depth of 8 and an average depth of
5.6.

The Digital Bibliography Library Project has
brought forward the DBLP data set. It provides bibli-
ographic information on major computer science jour-
nals and proceedings, and has been available since
2002. The DBLP data set is associated with a DTD
and the size of the document is 127 Megabytes. The
data set contains 3,332,130 element nodes, 404,276
attribute nodes, has a maximum depth of 6 and an
average depth of 2.9.

For the experiments, we have extracted fragments
from each NASA and DBLP that grow in size. There
are 25 different fragments for each data source, with
the next fragment including all previous ones plus
new nodes. Each fragment represents an independent
XML document.
Classes of XML Keys. We have evaluated the
performance with respect to different classes of XML
keys. The different classes result from the XPath axes
they use:

(C1) Permits node labels and parent-child navigation,

(C2) Class (C1) extended by ancestor-descendant nav-
igation in both context and target paths,

(C3) Class (C2) extended by label wildcard,

(C4) Class (C3) extended by following-sibling axis and
filter expressions,

(C5) Class (C3) extended by preceding axis,

(C6) Class (C3) extended by union operator in field
paths.

Experiments were conducted with the Professional
Edition of Saxon 9.5 on the .NET platform on an In-
tel(R) Core(TM)i7 CPU M620 @2.66GHz Processor
with 8GB of RAM and a 64-bit operating system.

7.2 Results

Table 1 shows the trends of time in seconds when ap-
plying our XQuery template for XML key validation
to the nested fragments of the NASA and DBLP data
sets, respectively. Each experiment was repeated 20
times, and the figures show minimum, average, and
maximum times for each key and each data fragment.

Our performance analysis has covered keys that
use different XPath axes and are applied to document
fragments of various sizes. The performance analysis
therefore allows us to draw a few conclusions regard-
ing the efficiency of our proposed validation method.
In Table 1 the general performance for the NASA
XML document shows a linear growth. The main rea-
sons for this trend are the size of the documents and
the selectivity of the target nodes that need to be sep-
arated to satisfy the given key. Every given key on the
NASA data set was either violated in every fragment
or satisfied by every fragment. Based on our pefor-
mance analysis, we may conclude that our proposed
implementation method works efficiently for medium-
sized XML documents and complicated XML keys.

The performance of validating fragments of the
DBLP data set against the given XML keys shows
a different behavior. For many keys a first viola-
tion frequently appears in the middle of the fragments
considered. Frequently, the validation time of subse-
quent fragments increases dramatically. Most likely,
the reason for this dramatic increase is simply the
number of target nodes that need to be separated.
Ideally, once a violation occurs for a smaller fragment
the violation of larger fragments would be found in a
similar time. However, XPath first selects all target
nodes (including new ones from larger fragments) be-
fore trying to separate them by the values on their key
paths. We may thus conclude that once the number
of target nodes that need to be separated becomes
too large, validation times grow dramatically. Most
likely this will occur in XML documents of large size.

8 Applying Assertions in XML Schema 1.1

XML Schema 1.1 (Thompson et al. 2012) provides
many more capabilities compared to XML Schema
1.0. Among those capabilities are assertions. By ap-
plying assertion, we are able to implement XML key
validation in XML Schema 1.1. As we illustrate now,
our XQuery implementation of the key by (Buneman
et al. 2002) requires little change to be transformed
into an XML Schema 1.1 (Thompson et al. 2012) as-
sertion. Figure 3 contains a sample XML Schema
definition and illustrates how an XML key can be
expressed as an assertion to validate a given XML
document.

We used oXygen XML Developer 15.0 to validate
the sample XML document from Figure 3. The bot-
tom of Figure 3 shows a screen-shots with the result of
validating the document on the right against the XML
Schema definition, inclusive of the XML key assertion,



(datasets, author, {initial, lastName}) (dblp, article, {author, title, year})

(//dataset/history, //creator, {lastName, affiliation}) (dblp, //article, {author, title, year})

(//datasets/reference/∗, // ∗ /other, {title, author/∗}) (dblp/child :: ∗, //article, {key})

(//dataset/following − sibling :: ∗[5], (∗, //www/following − sibling :: ∗[8], {title, url})
//author/following − sibling :: ∗[1], {initial, lastName})

(//dataset, //ingest, {creator/preceding :: ∗, date/preceding :: ∗}) (dblp, ../ ∗ /article, {key})

(datasets/child :: ∗, //author, {initial|lastName}) (dblp, book, {author, title|year})

Table 1: Evaluating XQuery Validation of NASA and DBLP Data Sets Against XML Keys



Figure 3: XML Schema 1.1 with Assertion of XML Key (x, y, {z}) and Invalid XML Document

on the left. The document is invalid and the follow-
ing error is reported ‘Element test does not satisfy
assertion not ( some $(c) in root()/* satisfies ( some
$(t1) in $(c)/*, $(t2) in $(c)/* satisfies( not($(t1) is
$(t2)) and ( some $(k1) in $(t1)/*, $(k2) in $(t2)/*
satisfies ( deep-equal($(k1),$(k2)) )))))’. The reason
why the XML document is invalid is that there is an
x-node that has two distinct y-children y1 and y2 such
that y1 has a z-child z1 and y2 has a z-child z2 such
that z1 and z2 are value-equal. On the other hand, if
we change the value of the first z node in the second
y node to 3, for example, the above XML document
will be valid, because it satisfies the assertion.

9 Conclusion and Future Directions

The official W3C recommendation for XML keys re-
quires the existence and uniqueness of nodes, which
is a strong requirement for many applications and a
source of intractability for associated reasoning tasks,
which limits their applicability in practice. As a re-
sponse, the academic community has proposed several
different notions of XML keys which can capture ex-
pressive application semantics and have good compu-
tational properties. Our results have shown that keys
of the most popular proposal (Buneman et al. 2002)
can still be validated with off-the-shelf XML tools, in-
cluding XQuery and XML Schema 1.1. This enables
many organizations to express sophisticated applica-
tion semantics within their XML documents, without
the need to develop designated validation techniques.
Therefore, better quality data and data-driven de-
cision making can be obtained without use of addi-
tional resources. An analysis shows that our valida-
tion techniques perform rather well on medium-sized
documents and sophisticated XML keys, but do not
scale well on documents of large size. Further research
is therefore required to find a sweet-spot for balancing
well the simplicity and performance of validation.
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