
Performance Analysis of Algorithms

to Reason about XML Keys�

Flavio Ferrarotti1, Sven Hartmann2, Sebastian Link3, Mauricio Marin4,
and Emir Muñoz4,5,��

1 Victoria University of Wellington
2 Clausthal University of Technology

3 The University of Auckland
4 Yahoo! Research

5 University of Santiago de Chile
Flavio.Ferrarotti@vuw.ac.nz

Abstract. Keys are fundamental for database management, indepen-
dently of the particular data model used. In particular, several notions
of XML keys have been proposed over the last decade, and their expres-
siveness and computational properties have been analyzed in theory. In
practice, however, expressive notions of XML keys with good reasoning
capabilities have been widely ignored. In this paper we present an efficient
implementation of an algorithm that decides the implication problem for
a tractable and expressive class of XML keys. We also evaluate the per-
formance of the proposed algorithm, demonstrating that reasoning about
expressive notions of XML keys can be done efficiently in practice and
scales well. Our work indicates that XML keys as those studied here have
great potential for diverse areas such as schema design, query optimiza-
tion, storage and updates, data exchange and integration. To exemplify
this potential, we use the algorithm to calculate non-redundant covers
for sets of XML keys, and show that these covers can significantly re-
duce the number of XML keys against which XML documents must be
validated. This can result in enormous time savings.

1 Introduction

The increasing popularity of XML for persistent data storage and data pro-
cessing has triggered the demand for efficient algorithms to manage XML data.
Both industry and academia have long since recognized the importance of keys in
XML data management. Over the last decade, several notions of XML keys have
been proposed and discussed in the database community. The most influential
proposal is due to Buneman et al. [3,4] who defined keys on the basis of an XML

� This research is supported by the Marsden Fund Council from Government funding,
administered by the Royal Society of New Zealand.

�� The contribution of this author was based on his Master’s thesis, which was sup-
ported by grants from the University of Santiago de Chile and Yahoo! Labs.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 101–115, 2012.
� Springer-Verlag Berlin Heidelberg 2012

102 F. Ferrarotti et al.

tree model similar to the one suggested by DOM [1] and XPath [6]. While Bune-
man et al. studied keys as a concept orthogonal to schema specification (such
as DTD or XSD), their proposal has been adopted by the W3C for the XML
Schema standard [15] subject to some minor, though essential modifications (see
[2] for a discussion). Today, all major XML-enabled DBMS, XML parsers and
editors (such as XMLSpy) support keys.

Example 1. Figure 1 shows an XML tree, in which nodes are annotated by their
type: E for element nodes, A for attribute nodes, and S for text nodes. For
the data represented in Figure 1 we have the following keys: (a) A project node
is identified by pname, no matter where the project node appears in the docu-
ment. (b) A team node can be identified by tname relatively to a project node.
(c) Within any given subtree rooted at team, an employee node is identified by
name. The first key is an example of an absolute key since it must hold globally
throughout the entire tree. The last two are examples of relative keys since they
hold locally within some subtrees. Note that a given team of employees can work
on several projects and thus a team node cannot be identified in the entire tree
by its tname. However, it holds locally within each subtree rooted at a project
node. Similarly, a given employee can work on different teams and thus cannot
be identified in the entire tree by its name. ��

E

E

E

A

E E

A
A A

E E E

A

Member
Team

rol

A
Team

Member

rol

A

Leader
Team

rol

E E

E

S
Smith

E

S
Dexter

E

S
Cooper

E

E

S

William

E

S
Bell

E

A
Team

Member

rol

E

E

S
Dexter

E

E

S
Cooper

A

E

E

S
William

E

S
Bell

E

A

E

E

S
Davis

E

S
Brook

E

S
John

project

db

team

Riders

team

tname

Coyotes

pname

Phobia MediaLow

pname

project

tname

employee
employee

employee

name name

lnamefnamelnamefname

name

fname lname

employee

name

fname lname

employee

rol

Team
Member

name

fname lname

employee

Team
Leader

rol

name

fname lname

Fig. 1. An XML tree representing an XML document

For relational data, keys have been widely used to improve the performance of
many perennial tasks in database management, ranging from consistency check-
ing to query answering. The hope is that keys will turn out to be equally bene-
ficial for XML. One of the most fundamental questions on keys is that of logical
implication, that is, deciding if a new key holds given a set of known keys. Among
other things, this is important for minimizing the cost of validating that an XML
document satisfies a set of keys gathered as business rules during requirements
engineering.

Example 2. Suppose, the database designer has already specified the keys (a),
(b) and (c). Now she considers a further key (d) which expresses that a project
node can be identified by its child nodes pname and team. By key (a) one already
knows that a project node can also be identified by just its pname. It is easy

Performance Analysis of Algorithms to Reason about XML Keys 103

to see that (a) actually implies (d), in the sense that every XML tree that
satisfies (a) also satisfies (d). Thus, instead of checking whether an XML tree T
satisfies (a) and (d), we could just check whether T satisfies (a). We would like
to emphasize that project nodes have complex content. Thus, checking whether
two project nodes in T violate (d) is quite costly in terms of time, since it
involves testing whether the subtrees rooted at their team nodes are isomorphic
to one another with the identity on string values. In contrast, checking whether
two project nodes violate (a) only involves checking equality on text of their
respective pname attribute nodes. ��
Example 3. No less important, the implication of XML keys is of interest for
semantically rich data exchange. Suppose, the company wants to share part
of their project data with a business partner. For that they generate a view
over the XML tree T but skip the lname nodes for the sake of privacy. Thus,
key (c) is no longer meaningful. To provide the business partner with relevant
semantic information it should be checked whether the specified keys allow one
to conclude a further key stating that an employee node is identified by their
remaining descendant nodes fname and role within any given team subtree. ��
The definition of keys adopted by the W3C for XML Schema [15] is currently
the industry standard for specifying keys. However, Arenas et al. [2] have shown
the computational intractability of the associated consistency problem, i.e., the
question whether there exists an XML document that conforms to a given XSD
and satisfies the specified keys. A further issue pointed out by Buneman et al.
[3] is the fact that XML Schema restricts value equality to string-valued data
items. But there are cases in which keys are not so restricted (see Section 7.1 of
[3] for discussion). In particular, keys (c) and (d) in our examples utilize a less
restricted notion of equality, since they require to test equality between name
nodes and team nodes, respectively, none of which are string-valued. On the other
hand, the expressiveness and computational properties of XML keys with good
reasoning capabilities have been deeply studied from a theoretical perspective
[3,4,9]. In practice, however, expressive yet tractable notions of XML keys have
been ignored so far.

Aiming to fill this gap between theory and practice, we initiate in this work
an empirical study of an expressive XML key fragment, namely the fragment of
XML keys with nonempty sets of simple key paths. As shown in [4,9], automated
reasoning about this XML key fragment can be done efficiently, in theoretical
terms. Our work confirms this fact in practice. Incidentally, note that all the
examples of XML keys described above belong to this fragment.

In this paper, we describe an efficient implementation of an algorithm that
decides the implication problem for an expressive fragment of XML keys and
thoroughly evaluate its performance. Our performance tests give first empirical
evidence that reasoning about expressive notions of XML keys is practically
efficient and scales well. Our work indicates that XML keys have great potential
for database management tasks similar to their counterparts for relational data.

104 F. Ferrarotti et al.

Exploiting our algorithm we compute non-redundant covers for sets of XML
keys. A set Σ of keys is non-redundant if there is no key σ in Σ such that σ is
implied by Σ − {σ}. Thus, considering such covers has the potential to reduce
significantly the number of keys against which an XML document must be val-
idated. This can result in enormous time savings. Our experiments show that
the time to compute a cover for a given set of keys is just a small fraction of the
average time needed to validate an XML document against a single key. Sur-
prisingly, even though several algorithms that validate XML documents against
sets of certain XML keys have been proposed and tested with promising results
(see e.g. [5,12]), none of them makes use of the reasoning capabilities of XML
keys as proposed in our work.

The paper is organized as follows. We recall basic notions in Section 2, in-
cluding the central notion of XML keys which is used through this work. In
Section 3, we present the algorithm for deciding XML key implication, and de-
scribe an implementation thereof in Section 4. In Section 5, we discuss how this
implementation can be reused to speed up the validation of XML documents
against sets of XML keys. Section 6 summarizes experimental results obtained
from applying our implementations to publicly available XML data, including
DBLP, the SIGMOD Record, and the Mondial database. We conclude the paper
in Section 7 with final remarks.

2 Keys for XML

We use the common representation of XML data as ordered, node-labelled trees.
Thus, an XML tree is a 6-tuple T = (V, lab, ele, att, val, r) where V is a set of
nodes, and lab is a mapping V → L = E ∪A ∪ {S} assigning a label to every
node in V . A node v ∈ V is an element node if lab(v) ∈ E, an attribute node if
lab(v) ∈ A, and a text node if lab(v) = S. Here E∪A ∪ {S} form a partition of
L. Moreover, ele and att are partial mappings defining the edge relation of T :
for any node v ∈ V , if v is an element node, then ele(v) is a list of element and
text nodes in V and att(v) is a set of attribute nodes in V . The partial mapping
val assigns a string to each attribute and text node. Finally, r is the unique and
distinguished root node.

The XML keys studied in this work are defined using the path language PL
consisting of expressions given by the following grammar:Q→ � | ε | Q.Q | ∗.
Here � ∈ L is any label, ε denotes the empty path expression, “.” denotes the
concatenation of two path expressions, and “ ∗” denotes the variable length “don’t
care” wildcard. Let Q be a word from PL. A path v1, . . . , vn in an XML tree
T is called a Q-path if lab(v1). · · · .lab(vn) can be obtained from Q by replacing
variable length wildcards in Q by words from PL. For a node v ∈ V , v[[Q]]
denotes the set of nodes in T that are reachable from v following any Q-path.
We use [[Q]] as an abbreviation for r[[Q]] where r is the root node of T . We denote
as PLs the subset of PL expressions containing all words over the alphabet L,
i.e., we do not allow wildcards in PLs expressions. Q ∈ PL is valid if it does not
have labels � ∈ A or � = S in a position other than the last one.

Performance Analysis of Algorithms to Reason about XML Keys 105

We define formally the concept of XML key following [4]. For that, we need the
concept value equality. Two nodes u, v ∈ V are value equal, denoted by u =v v,
iff the subtrees rooted at u and v are isomorphic by an isomorphism that is the
identity on string values. As an example, the third and fifth employee-nodes are
not value equal while their respective child nodes labeled as name are.

Definition 1. An XML key ϕ in the class K is an expression of the form
(Qϕ, (Q

′
ϕ, {Pϕ

1 , . . . , P
ϕ
kϕ
})) where kϕ ≥ 1, Qϕ and Q′

ϕ are PL expressions, and

for all i = 1, . . . , kϕ, P
ϕ
i is a PLs expressions such that Qϕ.Q

′
ϕ.P

ϕ
i is a valid PL

expression. An XML tree T satisfies the key (Q, (Q′, {P1, . . . , Pk})) if and only
if for every node q ∈ [[Q]] and all nodes q′1, q

′
2 ∈ q[[Q′]] such that there are nodes

xi ∈ q′1[[Qi]], yi ∈ q′2[[Pi]] with xi =v yi for all i = 1, . . . , k, then q′1 = q′2. There-
fore, Qϕ is called the context path, Q′

ϕ is called the target path, and Pϕ
1 , . . . , P

ϕ
kϕ

are called the key paths of ϕ.

In particular, the four keys described informally in the introduction, belong to
this class and can be expressed formally as follows: (a) (ε, (project , {pname}));
(b) (project , (team{tname})); (c) (∗.team , (employee , {name})); (d) (ε, (project ,
{pname, team})).

3 Deciding XML Key Implication

Let Σ ∪ {ϕ} be a finite set of XML keys in a class C. We say that Σ implies ϕ,
denoted by Σ |= ϕ, if and only if every finite XML tree T that satisfies all σ ∈ Σ
also satisfies ϕ. The implication problem for C is to decide, given any finite set
Σ ∪ {ϕ} of keys in C, whether Σ |= ϕ.

A finite axiomatization for the implication of keys in the class of XML keys
with nonempty sets of simple key paths K, was established in [9]. The complete-
ness proof of this axiomatization is based on a characterization of key implication
in terms of the reachability problem for fixed nodes in a suitable digraph. This
characterization, together with the efficient evaluation of Core XPath [8], re-
sulted in a compact algorithm to decide XML key implication in time quadratic
in the size of the input key. This algorithm, which is described next, forms the
basis for our implementation. We need the following technical concepts.

Mini-trees and Witness Graphs. Let Σ∪{ϕ} be a finite set of keys in K. Let
LΣ,ϕ denote the set of all labels � ∈ L that occur in path expressions of keys in
Σ ∪ {ϕ}, and fix a label �0 ∈ E−LΣ,ϕ. Let Oϕ and O′

ϕ be the PLs expressions
obtained from the PL expressions Qϕ and Q′

ϕ, respectively, by replacing each
wildcard “ ∗” by �0. Let p be an Oϕ-path from a node rϕ to a node qϕ, let p

′ be
an O′

ϕ-path from a node r′ϕ to a node q′ϕ and, for each i = 1, . . . , kϕ, let pi be a
Pϕ
i -path from a node rϕi to a node xϕi , such that the paths p, p′, p1, . . . , pkϕ are

mutually node-disjoint. From the paths p, p′, p1, . . . , pkϕ we obtain the mini-tree
TΣ,ϕ by identifying the node r′ϕ with qϕ, and by identifying each of the nodes
rϕi with q′ϕ. The marking of the mini-tree TΣ,ϕ is a subset M of the node set of
TΣ,ϕ: if for all i = 1, . . . , kϕ we have Pϕ

i �= ε, then M consists of the leaves of
TΣ,ϕ, and otherwise M consists of all descendant nodes of q′ϕ in TΣ,ϕ.

106 F. Ferrarotti et al.

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

E

S

E

dbE

E public

national

project

E

S

E project

E

S

E

S

(1)

(3)

E

E

E national

public

(2)

yearpname

pname year

××1 2

′

rϕ = qϕ

r′ϕ

r
ϕ
1 r

ϕ
2

qϕ

q′ϕq′ϕ

x
ϕ
1

x
ϕ
1

x
ϕ
2

x
ϕ
2

v′
1v′

1

v′
2v′

2

w1

w1

w′
1

w′
1

p

pp

p

(a) Mini tree TΣ,ϕ

db

E

E

E

E E

SS

public

national

project

E

yearpname

××

qϕ

q′ϕ

p

pp

p

(b) Witness graph

GΣ,ϕ

Node 1

Node 2

vertexEle
Node 1

edgeEle

nodeEle

(public)

Node 3 Node 0

vertexEle
Node 2

edgeEle edgeEle

nodeEle

(national)

Node 4 Node 6 Node 1

vertexEle
Node 3

edgeEle edgeEle edgeEle

nodeEle

(project)

(S)

Node 7

(db)vertexEle

edgeEle

nodeEleNode 0

L

.....

p

pp

p

(c) Adj. list for GΣ,ϕ

Fig. 2. Mini-tree, Witness-graph and Adjacency list

Example 4. Let Σ = {σ1, σ2} where σ1 and σ2 are the XML keys (ε, (public. ∗,
{project .pname.S, project.year.S})) and (public, (∗.project , {pname.S, year.S})),
respectively. Let ϕ = (ε, (public. ∗.project, {pname.S, year.S})). The construc-
tion of the mini-tree TΣ,ϕ is schematized in Figure 2 (a).

The mini-trees are used in the algorithm as a base to calculate the impact of
a key in Σ on a possible counter-example tree for the implication of ϕ by Σ.
To distinguish keys that have an impact from those that do not, the following
notion of applicability is needed. Let TΣ,ϕ be the mini-tree of the key ϕ with
respect to Σ, and let M be its marking. A key σ is said to be applicable to ϕ
if and only if there are nodes wσ ∈ [[Qσ]] and w′

σ ∈ wσ[[Q
′
σ]] in TΣ,ϕ such that

w′
σ[[P

σ
i]] ∩ M �= ∅ for all i = 1, . . . , kσ. We say that wσ and w′

σ witness the
applicability of σ to ϕ.

We define the witness graph GΣ,ϕ as the node-labeled digraph obtained from
TΣ,ϕ by inserting additional edges: for each key σ ∈ Σ that is applicable to
ϕ and for each pair of nodes wσ ∈ [[Qσ]] and w′

σ ∈ wσ[[Q
′
σ]] that witness the

applicability of σ to ϕ, GΣ,ϕ contains the directed edge (w′
σ , wσ) from w′

σ to wσ.

Example 5. Let Σ and ϕ be as in Example 4. Both keys in Σ are applicable to
ϕ. The witness graph GΣ,ϕ is shown in Figure 2 (b). It contains a witness edge
from national to db that arises from σ1 and a witness edge from project to public
that arises from σ2.

The algorithm. Algorithm 1 decides XML key implication. Its correctness is
an immediate consequence of Theorem 1.

Theorem 1. ([9]) Let Σ ∪ {ϕ} be a finite set of keys in the class K. We have
Σ |= ϕ if and only if qϕ is reachable from q′ϕ in GΣ,ϕ.

Performance Analysis of Algorithms to Reason about XML Keys 107

Algorithm 1. (XML key implication in K)

Input: finite set of XML keys Σ ∪ {ϕ} in K
Output: yes, if Σ |= ϕ; no, otherwise
1: Construct GΣ,ϕ for Σ and ϕ;
2: if qϕ is reachable from q′ϕ in G then return yes;

else return no; end if

4 An Efficient Implementation

In this section we discuss our implementation of Algorithm 1 and analyze its
theoretical complexity. The implementation was developed in C++ using gcc
version 4.4.3 from the GNU compiler collection.

Data Structures. We need data structures suitable to represent mini-trees and
witness-graphs. The obvious candidates are adjacency matrices and adjacency
lists. Since the algorithm does not require frequent determination of edge exis-
tence, we choose the latter in order to minimize the memory requirements. In
our implementation, a mini-tree TΣ,ϕ is represented by using a list L of length
n = |V | where V is the vertex set of TΣ,ϕ. Each element ei ∈ L is represented by
an object of type vertexEle that has a pointer to the adjacency list of the i-th
vertex vi in some fixed enumeration of the vertices in V , a pointer to the data
component of the vertex vi, and a pointer to the next element ei+1 in the list.
In turn, the data component of a vertex vi is represented by an object of type
nodeEle, and an element in the adjacency list of a vertex vi is represented by
an object of type edgeEle. An object of type nodeEle has an id component that
uniquely identifies vi, a label component with the label of vi, a flag visited, and
a type component with the type E (element), A (attribute) or S (PCDATA) of
vi. An object of type edgeEle has a pointer to an object of type vertexEle and a
pointer to the next object of type edgeEle in the adjacency list. Witness graphs
are represented likewise. Figure 2(b) shows a witness graph and Figure 2(c) a
corresponding representation using adjacency lists.

The Implementation. We implemented Step 1 of Algorithm 1, using the fol-
lowing strategy:

i. Construct TΣ,ϕ;
ii. Determine the marking of TΣ,ϕ;
iii. For each σ ∈ Σ, add the edge (w′

σ, wσ) to TΣ,ϕ whenever wσ and w′
σ witness

the applicability of σ to ϕ.

Substep (i) involves constructing the mini-tree TΣ,ϕ using the data structures
defined at the beginning of this section. Note that we can find a label �0 that is
not among the labels used in the XML keys in Σ ∪{ϕ} in time

∑
σi∈Σ |σi|+ |ϕ|,

where |σi| and |ϕ| denote the sum of the lengths of all path expressions in σi
and ϕ, respectively. Once we have got a suitable label, �0, TΣ,ϕ can be built in
time O(|ϕ|), since the mini-tree TΣ,ϕ has only |ϕ|+ 1 nodes.

108 F. Ferrarotti et al.

Regarding Substep (ii), if Pϕ
i �= ε we can determine the marking of the mini-

tree TΣ,ϕ by simply traversing the list L marking the nodes whose adjacency
list is empty. Note that those nodes correspond to leaves in TΣ,ϕ. Otherwise,
we mark all nodes in the adjacency list of the element ei in L that repre-
sents q′ϕ, and recursively mark all descendants of those nodes. This step takes
O(|ϕ|) time.

In principle, Substep (iii) requires, for each σ ∈ Σ, to evaluate w′
σ[[P

σ
i]] for

i = 1, . . . , kσ, for all w
′
σ ∈ wσ[[Q

′
σ]] and all wσ ∈ [[Qσ]]. However, we do not need

to determine all witness edges (w′, w) to decide whether qϕ is reachable from q′ϕ
in the witness graph GΣ,ϕ. Let W

′
σ be the set of all nodes w′ in TΣ,ϕ for which

there exists some node w in TΣ,ϕ such that w and w′ witness the applicability
of σ to ϕ. Further, for each w′ ∈ W ′

σ, let Wσ(w
′) be the set of all nodes w in

TΣ,ϕ such that w and w′ witness the applicability of σ to ϕ. The witness edges
are just the pairs (w′, w) with w′ ∈ W ′

σ and w ∈ Wσ(w
′). As shown in [9], it

is not necessary to determine the entire set Wσ(w
′) for each w′ ∈ Wσ. We can

actually restrict ourselves to the top-most ancestor of q′ϕ in TΣ,ϕ that belongs
to Wσ(w

′), which we denote by wtop
σ (w′) (if it exists).

So, we need first to determine W ′
σ, and then, for each w′ ∈ W ′

σ, we need to
determine wtop

σ (w′) (if it exists). By definition, W ′
σ consists of all nodes w′ ∈

[[Qσ.Q
′
σ]] in TΣ,ϕ such that, for each i = 1, . . . , kσ, there is a marked node in

w′[[P σ
i]]. Since a query of the form v[[Q]] is a Core XPath query and can be

evaluated on a node-labelled tree T in O(|T |× |Q|) time, it follows that [[Qσ.Q
′
σ]]

can be evaluated in TΣ,ϕ in O(|ϕ|×|Qσ.Q
′
σ|) time. Next, fix some i ∈ {1, . . . , kσ}.

Let v be a marked node, and let u denote the ancestor of v that resides |P σ
i |

levels atop of v in TΣ,ϕ (if it exists). We can then check whether v ∈ u[[P σ
i]],

that is, whether the unique path from u to v is a P σ
i -path. This can be done in

O(min{|P σ
i | , |ϕ|}) time, since P σ

i is a PLs expression. By inspecting all nodes
v ∈ M, we obtain the set Uσ

i of all nodes u in TΣ,ϕ for which u[[P σ
i]] ∩M �= ∅.

Overall, this takes O(|M|×|P σ
i |}) time. Since W ′

σ is the intersection of [[Qσ.Q
′
σ]]

with the sets Uσ
i , i = 1, . . . , kσ, we get thatW

′
σ can be determined in O(|ϕ|×|σ|)

time. Regarding wtop
σ (w′), note that if Q′

σ is a PLs expression, then wtop
σ (w′) is

the node |Q′
σ| levels atop of w′ in TΣ,ϕ. Otherwise Q′

σ contains a ∗, and thus
has the form A. ∗.B where A is a PLs expression and B is a PL expression.
In this case, as shown in [9], wtop

σ (w′) is the top-most ancestor w of q′ϕ in TΣ,ϕ

that belongs to [[Qσ]] and for which w[[A]] is non-empty. In particular, wtop
σ (w′)

is independent from the choice of w′ in W ′
σ . Thus, we propose Algorithm 2 to

determine wtop
σ (w′) for a given node w′.

Since [[Qσ.A]] can be evaluated in O(|ϕ| × |Qσ.A|) time, we can conclude
from the previous algorithm that wtop

σ (w′) for a given w′ can be determined in
O(|ϕ| × |Qσ.A|) time. Thus, it takes us O(|ϕ| × |σ|) time to determine all the
witness edges arising from σ that are needed for deciding the reachability of qϕ
from q′ϕ inGΣ,ϕ. Finally, Step 2 of Algorithm 1 can be implemented by applying a
depth-first search algorithm to GΣ,ϕ with root q′ϕ. This algorithm works in time
linear in the number of edges of GΣ,ϕ [11]. Over all, our implementation can
decide the implication problem Σ |= ϕ in O(|ϕ| × (

∑
σi∈Σ |σi|+ |ϕ|)) time.

Performance Analysis of Algorithms to Reason about XML Keys 109

Algorithm 2. (Determine wtop
σ (w′))

Input: a mini-tree TΣ,ϕ, a set W ′
σ, and a node w′ ∈W ′

σ.
Output: wtop

σ (w′)
1: if Q′

σ is a PLs expression then
2: return The node |Q′

σ| levels atop of w′ in TΣ,ϕ

3: else
4: Determine the set [[Qσ.A]] of nodes in TΣ,ϕ

5: if [[Qσ.A]] �= ∅ then
6: Choose a topmost node v
7: Select the node w that is |A| levels atop of v in TΣ,ϕ

8: if w is an ancestor of q′ϕ then
9: return w
10: else
11: return ⊥ //wtop

σ (w′) does not exist.
12: end if
13: end if
14: end if

5 Applying XML Key Reasoning to Document Validation

Fast algorithms for the validation of XML documents against keys are crucial
to ensure the consistency and semantic correctness of data stored in databases
or exchanged between applications. In this section we explain how our imple-
mentation of the implication algorithm for XML keys can be used to compute
non-redundant cover sets of XML keys, which in turn can be used to significantly
speed up the process of XML document validation against sets of XML keys.
This is, up to our knowledge, the first time that the reasoning capabilities of
XML keys are used in this context.

Cover Sets for XML Keys. We define the concept of cover set of XML keys
following the notion given in [13] for functional dependencies in the relational
model.

Definition 2. Let Σ∗ denote the set of all XML keys implied by a given set
Σ. Two sets Σ1 and Σ2 of XML keys are equivalent, denoted by Σ1 ≡ Σ2, if
Σ∗

1 = Σ∗
2 . If Σ1 and Σ2 are equivalent we call them a cover of one another. This

means that Σ1 and Σ2 imply exactly the same XML keys.

For all cover Σ2 of Σ1, if an XML tree TD satisfies Σ2 (TD |= Σ2), then TD |= Σ1

too. If Σ1 ≡ Σ2, then for each XML key ψ in Σ∗
1 , Σ2 |= ψ, because Σ∗

2 = Σ∗
1 .

In particular, Σ2 |= ψ for each key ψ in Σ1.

Definition 3. A set Σ2 of XML keys is non-redundant if it is not equivalent
to any of its proper subsets. Σ2 is a non-redundant cover for a set Σ1 of XML
keys if Σ2 is non-redundant and a cover for Σ1.

An important property is that a non-redundant cover set has in most cases fewer
keys that the original one (in the extreme case both sets are equal). This can

110 F. Ferrarotti et al.

result in enormous time saving when validating an XML document against a set
of XML keys, as we will show in the experimental results.

A characterization of non-redundancy is that Σ is non-redundant if there is
no key ψ in Σ such that Σ − {ψ} |= ψ. A key ψ ∈ Σ is called redundant if
Σ−{ψ} |= ψ. Thus, we propose Algorithm 3 to compute, given a set Σ of XML
keys, a non-redundant cover Θ of Σ.

Algorithm 3. (Non-redundant Cover for XML keys)

Input: finite set Σ of XML keys
Output: a non-redundant cover for Σ
1: Θ = Σ;
2: for each key ψ ∈ Σ do
3: if Θ − {ψ} |= ψ then
4: Θ = Θ − {ψ};
5: end if
6: end for
7: return Θ;

It is important to note that a set Σ can have more than one non-redundant
cover set and there can exist non-redundant cover sets that are not included
in Σ.

The complexity of Algorithm 3 is determined by the complexity of the implica-
tion algorithm which is executed once for every key in Σ. Thus a non-redundant
cover set for a set Σ of XML keys in K can be computed in O(|Σ| × (max{|ψ| :
ψ ∈ Σ})2) time.

6 Experimental Results

In the following we present a performance analysis of the algorithms proposed
in this work. Up to our knowledge, this is the first time that the theory on
automated reasoning about XML keys is tested in practice. The running time
results were obtained in an Intel Core 2 Duo 2.0 GHz machine, 3GB RAM, and
Linux kernel 2.6.32.

The Data Set. We used a collection of large XML documents from [14]. The
collection consists of the following XML documents. A characterization of the
documents is shown in Table 1.

– 321gone.xml and yahoo.xml. Auction data converted to XML.
– dblp.xml. Bibliographic information on computer science.
– nasa.xml Astronomical Data converted from legacy flat-file format into XML.
– SigmodRecord.xml. Index of articles from SIGMOD Record.
– mondial-3.0.xml. World geographic database from several sources.

We defined, for each document in the collection, a corresponding set of 5 to 10
appropriate (in the context of the document) XML keys.

Performance Analysis of Algorithms to Reason about XML Keys 111

Table 1. XML Documents

Doc ID Document No. of
Elements

No. of
Attributes

Size Max.
Depth

Average
Depth

Doc1 321gone.xml 311 0 23 KB 5 3.76527
Doc2 yahoo.xml 342 0 24 KB 5 3.76608
Doc3 dblp.xml 29,494 3,247 1.6 MB 6 2.90228
Doc4 nasa.xml 476,646 56,317 23 MB 8 5.58314
Doc5 SigmodRecord.xml 11,526 3,737 476 KB 6 5.14107
Doc6 mondial-3.0.xml 22,423 47,423 1 MB 5 3.59274

Then, in order to test the scalability of the implication algorithm, we gen-
erated large sets of XML keys in the following two systematic ways. Firstly,
using the manually defined sets of XML keys as seeds, we computed new im-
plied keys by successively applying the inference rules from the axiomatization
of XML keys presented in [9]. For instance, by applying the interaction rule to
(listing, (auction info, {high bidder. bidder name.S, high bidder.bidder rating.
S})) and (listing.auction info, (high bidder, {bidder name.S, bidder rating.S}
)), we derived the implied key (listing, (auction info.high bidder, {bidder name.
S, bidder rating.S})). Each key generated by this method was added to the
original set. We applied the interaction, context-target, subnodes, context-path
containment, target-path containment, subnodes-epsilon and prefix-epsilon rules
whenever possible, since those are the rules which can produce implied keys with
corresponding non trivial witness graphs (see the proof of Lemma 3.6 in [9]). Sec-
ondly, we defined some non-implied (by the keys defined previously) XML keys.
We did that by taking non-implied XML keys ϕ, building their corresponding
mini-trees TΣ,ϕ, adding several witness edges to it while keeping qϕ not reachable
from q′ϕ, and finally defining new non-implied XML keys corresponding to those
witness edges. As an example, let us take the mini-tree in Figure 3 which corre-
sponds to the key ϕ = (conference, (issue. ∗.articles.article.author, {first.S,
last.S})). From the witness edges (a), (b) and (c), we obtained the keys, (conf -
erence.issue, (∗, { articles.article.author.first.S})), (conference.issue. ∗, (ar-
ticles.article, {author.first.S})) and (conference.issue. ∗.articles, (article.
au- thor{first.S})), respectively.

E E EEEEE

E S

E Sau
th

or

db co
nf

er
en

ce

is
su

e

ar
tic

le
s

ar
tic

le la
st

fir
st

×
×q

ϕ

q
′ ϕ

�
0
=

co
n
te
n
t

Fig. 3. Mini-tree corresponding to a non-implied key

112 F. Ferrarotti et al.

This process gave us a robust collection of XML keys to thoroughly test the
performance of the implication algorithm.

Deciding Implication of XML Keys: Tests Results. The results regarding
running times for deciding the implication of XML keys are shown in Figures 4(a)
and 4(b). In both figures, the x-axis corresponds to the number of keys in Σ, and
the y-axis corresponds to the average running time required to decide whether Σ
implies a given key ϕ. More precisely, let time(Σ,ϕ) be the running time required
to decide Σ |= ϕ and let Φ be a set of XML keys such that Σ∩Φ = ∅, the running
time shown in Figures 4(a) and 4(b), corresponds to

(∑
ϕi∈Φ time(Σ,ϕi)

)
/|Φ|.

In our experiments the sets Φ were composed of 20 fixed XML keys each. We
tested the scalability of the algorithm by adding, in each iteration, 5 new XML
key to the corresponding Σ sets. The actual XML keys included in all these sets
were created using the strategy explained above.

We consider Σ sets composed by (i) only absolute keys (“abs”), (ii) only
relative keys (“rel”) or (iii) both types of keys (“mix”). Given that an input key
ϕ can be either absolute or relative, we have a total of six test cases. The results
obtained in these experiments are summarized in Figure 4(a). For a small set Σ
with about 5 XML keys, the execution takes 0.2ms in average, whereas for a large
set of about 100 XML keys, the execution takes 1.7ms in average. This indicates
that our implementation of the implication algorithm is practically efficient and
scales well regardless of the type of XML keys considered.

Note that the resulting running time is slightly lower when ϕ is an absolute key
and Σ is composed by either absolute or relative keys. This is mainly due to the
fact that Qϕ = ε, which means that the construction of the mini-tree involves less
steps and that the qϕ node corresponds to the root node, making it unnecessary
to perform a search for such node. On the other hand, the performance shown
by the “abs-rel” curve in Figure 4(a) is slightly degraded due to the fact that, in
general, the algorithm needs to traverse more nodes to determine whether qϕ is
reachable from q′ϕ. This is consistent with the way in which the witness graphs
are defined.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 20 40 60 80 100 120 140

abs-abs
abs-rel
rel-abs
rel-rel

mix-abs
mix-rel

T
im

e
[m

s]

Size of Σ

(a) XML key implication (all cases)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120 140

mix-rel
wildcard

T
im

e
[m

s]

Size of Σ

(b) Increased number of wildcards

Fig. 4. Performance of the Algorithm for the Implication of XML Keys

Performance Analysis of Algorithms to Reason about XML Keys 113

To isolate the effect of wildcards in the performance of the algorithm, we du-
plicated the number of wildcards in the keys of the test case “mix-rel”, replacing
some of the labels in the context and target paths of those keys by the variable
length wildcard. Figure 4(b) shows the running times for the original set of keys
(curve “mix-rel”) and the set with increased number of wildcards (curve “wild-
card”). The results show that the presence of wildcards in the path expressions
increases the running time for the test sets with large number of keys, but such
increase is not significant in practice.

Document Validation: Tests Results. We use the same data set as before.
The aim is to determine the viability of computing non-redundant cover sets to
speed up the validation of XML documents against XML keys. By validating an
XML document against a set of XML key, we refer to the task of checking, for
every XML key in the set, whether the document satisfies such key.

To validates XML keys, we use a naive algorithm that parses the XML docu-
ment into a DOM tree and then evaluates the XML keys on the resulting tree,
by using XPath queries to express their context, target and key paths. We do
need to use sophisticated validation algorithms such as [5,12], since the proposed
optimization based in cover sets is independent of the particular algorithm used
for XML key validation.

The results (in milliseconds (ms)) obtained from the computation of non-
redundant cover sets is summarized in Figure 5 (a). We emphasize that the
behavior of the Algorithm 3 is linear in practice. For example, for a set of 146
keys, calculating a non-redundant cover set takes around 155ms. A total of 102
keys are discarded reducing the set to 44 keys.

Figure 5 (b) shows the optimization achieved by pre-calculating non-redundant
cover sets during the validation process of the documents in Table 1. The results

XML doc. Key Set Time[ms]

321gone & Processed Keys: 23 3.458
yahoo Discarded keys: 15
(Doc1) Cover set: 8 keys

DBLP Processed Keys: 36 12.757
(Doc2) Discarded keys: 24

Cover set: 12 keys

nasa Processed Keys: 35 9.23
(Doc3) Discarded keys: 28

Cover set size: 7 keys

Sigmod Processed Keys: 24 5.294
Record Discarded Keys: 19
(Doc4) Cover set: 5 keys

mondial Processed Keys: 26 4.342
(Doc5) Discarded Keys: 16

Cover set: 10

(a) Non-redundant Cover Sets.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6

R
u
n
n
in

g
 T

im
e
 [
m

s
]

XML documents

952ms 1329ms

Full-set
Cover-set

>30min >25min 1.88min 5min

(b) Validation Against Cover Sets.

Fig. 5. Non-redundant Cover Sets of XML keys and Validation of XML Documents

114 F. Ferrarotti et al.

indicate that the running time required to compute a non-redundant cover set
is just a tiny fraction of the overall running time required to validate a single
XML document against a key. Note that in most cases the validation time can be
significantly reduced by pre-computing the non-redundant covers. This can be
clearly observed in the case of the DBLP document (’Doc3’) and Nasa document
(’Doc4’). In these cases the running time of the validation against the original
set of XML keys is approximately 63 times greater than the running time of the
validation against its non-redundant cover-set.

7 Conclusion

Our research was motivated by two objectives. Firstly, we wanted to demonstrate
that there are expressive classes of XML keys that are not only tractable in
theory but can be reasoned about efficiently in practice. For that we studied a
fragment of XML keys as originally introduced by Buneman et al. [3,4], namely
the class K of XML keys with nonempty sets of simple key paths. For these keys
it was known that their implication problem can be decided in quadratic time
in theory [9]. Here we have presented an efficient implementation thereof, and
our experiments show that it also runs fast in practice and scales well.

Secondly, we wanted to show that our observations on the problem of decid-
ing implication is not only of interest for the problem itself but has immediate
consequences for other perennial tasks in XML database management. As an
example we study the problem of validating an XML document against a set of
XML keys. We have presented an optimization method for this validation that
computes a non-redundant cover for the set of XML keys given as input so that
satisfaction only needs to be checked for the keys in this cover. This can reduce
the number of keys significantly, and our experiments show that enormous time
savings can be achieved in practice. This holds true even though the validation
procedure is able to decide value equality among element nodes with complex
content as this is required for the XML keys studied here (and distinguishes
them from the keys defined in XML Schema). This illustrates the advantage of
having efficient reasoning capabilities at hand for integrity constraints.

We would like to emphasize that the use of non-redundant covers does not
depend on the particular choice of the XML fragment but can be tailored to
any class of XML constraints for which the implication problem can be solved
efficiently. We plan to extend our studies to other expressive classes of XML keys
and related constraints such as those studied in [10,7].

References

1. Apparao, V., et al.: Document object model (DOM) level 1 specification, W3C
recommendation (1998), http://www.w3.org/TR/REC-DOM-Level-1/

2. Arenas, M., Fan, W., Libkin, L.: What’s Hard about XML Schema Constraints? In:
Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453,
pp. 269–278. Springer, Heidelberg (2002)

http://www.w3.org/TR/REC-DOM-Level-1/

Performance Analysis of Algorithms to Reason about XML Keys 115

3. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. Computer
Networks 39(5), 473–487 (2002)

4. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Reasoning about keys for
XML. Inf. Syst. 28(8), 1037–1063 (2003)

5. Chen, Y., Davidson, S., Zheng, Y.: Xkvalidator: a constraint validator for XML.
In: CIKM 2002: Proceedings of the 2002 ACM CIKM International Conference on
Information and Knowledge Management, pp. 446–452. ACM (2002)

6. Clark, J., DeRose, S.: XML path language (XPath) version 1.0, W3C recommen-
dation (1999), http://www.w3.org/TR/xpath

7. Ferrarotti, F., Hartmann, S., Link, S.: A Precious Class of Cardinality Constraints
for Flexible XML Data Processing. In: Jeusfeld, M., Delcambre, L., Ling, T.-W.
(eds.) ER 2011. LNCS, vol. 6998, pp. 175–188. Springer, Heidelberg (2011)

8. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. Trans. Database Syst. 30(2), 444–491 (2005)

9. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

10. Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5),
521–544 (2010)

11. Jungnickel, D.: Graphs, Networks and Algorithms. Springer (1999)
12. Liu, Y., Yang, D., Tang, S., Wang, T., Gao, J.: Validating key constraints over

XML document using XPath and structure checking. Future Generation Comp.
Syst. 21(4), 583–595 (2005)

13. Maier, D.: Minimum Covers in the Relational Database Model. J. ACM 27, 664–674
(1980)

14. Suciu, D.: XML Data Repository, University of Washington (2002),
http://www.cs.washington.edu/research/xmldatasets/www/repository.html

15. Thompson, H., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1:
Structures Second Edition, W3C Recommendation (2004),
http://www.w3.org/TR/xmlschema-1/

http://www.w3.org/TR/xpath
http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.w3.org/TR/xmlschema-1/

	Performance Analysis of Algorithms to Reason about XML Keys

	Introduction
	Keys for XML
	Deciding XML Key Implication
	An Efficient Implementation
	Applying XML Key Reasoning to Document Validation
	Experimental Results
	Conclusion
	References

