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Abstract. Cardinality is an important structural aspect of data that
has not received enough attention in the context of RDF knowledge
bases (KBs). Information about cardinalities can be useful for data users
and knowledge engineers when writing queries, reusing or engineering
KBs. Such cardinalities can be declared using OWL and RDF constraint
languages as constraints on the usage of properties over instance data.
However, their declaration is optional and consistency with the instance
data is not ensured. In this paper, we address the problem of mining
cardinality bounds for properties to discover structural characteristics
of KBs, and use these bounds to assess completeness. Because KBs are
incomplete and error-prone, we apply statistical methods for filtering
property usage and for finding accurate and robust patterns. Accuracy
of the cardinality patterns is ensured by properly handling equality ax-
ioms (owl:sameAs); and robustness by filtering outliers. We report an
implementation of our algorithm with two variants using SPARQL 1.1
and Apache Spark, and their evaluation on real-world and synthetic data.

1 Introduction

The Resource Description Framework (RDF) is a widely used framework for rep-
resenting knowledge (bases) on the Web. RDF is schema-less, which means that
it gives freedom to data publishers in describing entities and their relationships
using facts without the need to observe some specified unique global data schema.
Most RDF knowledge bases (KBs) avoid to include domain, range or cardinal-
ity restrictions because of the contradictions that they can generate [6,21]. For
instance, having two different properties (e.g., from different ontologies) to repre-
sent the population of a country, or using two or more labels to refer to the same
entity. However, the lack of a central schema causes a series of difficulties in the
consumption of such data (e.g., [9,11,1,14]), e.g., having two different population
numbers in the same KB. For instance, data users and knowledge engineers need
an understanding of what information is available in order to write queries, and
to reuse or engineer KBs [15,26]. In data management, cardinality is an impor-
tant aspect of the structure of data. We show that the aforementioned problem
can be overcome partially by mining cardinalities from instance data, and com-
plement other methods (e.g., [30]) towards the generation of a central schema. In
RDF, the cardinality of a property limits the number of values that may have for
a given entity, and can be declared using the Web Ontology Language (OWL) or
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RDF constraint languages; however, such declarations are hand-crafted and ap-
plication dependent. Therefore, ontologies rarely include cardinality declarations
in practice, highlighting the need for cardinality mining methods.

In this work, our main goal is to discover such structural patterns using a
bottom-up or extensional approach for mining cardinality bounds from instance
data. Cardinality bounds are hidden data patterns that unveil the structure of
data, and in some cases they might not even be intuitive for data creators [14].
Our approach produces accurate cardinalities by taking into consideration the
semantics of owl:sameAs1 equality axioms in KBs; and robust ones by not as-
suming completely correct data, i.e., instance data can have errors. By doing so,
the output of this work can serve users to analyse completeness and consistency
of data, and thus contribute towards higher levels of quality in KBs [7,26,16].

Recently, RDF constraint languages (e.g., Shape Expressions [19], Shapes
Constraint Language (SHACL)2) have been defined to satisfy the latent require-
ments for constraints definition and validation of RDF in real-world use cases.
They build upon SPARQL or regular expressions to define so-called shapes that
perform for RDF the same function as XML Schema, DTD and JSON Schema
perform for XML or JSON: delimit the boundaries of instance data. Here, we
consider that properties in KBs are constrained by multiplicities, which cover
a critical aspect of relational data modelling, referring to the number of values
that a property can have. Specifically, we consider a set of cardinalities or multi-
plicities as part of the internal structure of an entity type in a KB. In databases,
internal structure-based methods are also referred to as constraint-based ap-
proaches, and have been used for schema matching [20]. Unlike databases, RDF
and OWL assume the open-world semantics, and absence of the unique name
assumption (nUNA). This makes the problem of extracting cardinalities more
complex than a simple application of SPARQL queries using the COUNT opera-
tor. Take as example the constraint “a person must have two parents”: if the
data contain an entity of type person with only one parent, this does not cause a
logical inconsistency, it just means it is incomplete, and in RDF/OWL incom-
plete is different from inconsistent. To deal with these specificities, we propose a
method which tackles two important challenges: (1) KB Normalisation, where
we must deal with owl:sameAs (or alike) axioms representing equality between
entities, and (2) Outliers Filtering, where we account for the probability of noise
in the data, in order to extract robust cardinality patterns.

This paper is organised as follows: In Section 2 we review the related work
about cardinality, consistency, and schema discovery in KBs. Section 3 intro-
duces some preliminaries about the RDF model. Section 4 provides a definition
and semantics for cardinality bounds in KBs considering existing languages. In
Section 5 we define an algorithm for mining cardinality bounds in an accurate
and robust manner, and propose one implementation with two normalisation
variants. Finally, we evaluate our algorithm over different datasets in Section 6,
and present our conclusions and outlook in Section 7.

1 Henceforth, we use prefixes for namespaces according to http://prefix.cc/
2 https://www.w3.org/TR/shacl/ (accessed on February 13, 2017)
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2 Related Work

Cardinality constraints/bounds. Cardinality constraints in RDF have been
defined for data validation in languages such as OWL [13], Shape Expressions
(ShEx) [19], OSLC Resource Shapes [24], and Dublin Core Description Set Pro-
files (DSP)3. OSLC integrity constraints include cardinality of relations which
are more similar to UML cardinality for associations (i.e., exactly-one, one-or-
many, zero-or-many, and zero-or-one). However, the expressivity of OSLC is
limited compared to the definitions proposed in OWL4, DSP, Shapes Constraint
Language (SHACL), and Stardog ICV5. All of them define flexible boundaries
for cardinality constraints: a lower bound in N, and an upper bound in N∪{∞}.
SPIN6 Modelling Vocabulary is yet another language that based on SPARQL to
specify rules and logical constraints, including cardinality. It is worth pointing
out that due to the bottom-up approach taken here we do not refer to our car-
dinalities as constraints but as bounds. They can be considered as constraints
only after a user assessment and application over a given dataset. Despite this,
our work builds upon existing approaches for cardinality constraints in RDF and
other data models such as XML [3] and Entity-Relationship [28,10].

Consistency in RDF graphs. Consistency is a relevant dimension of data
quality, and many researchers have investigated the checking and handling of
inconsistencies in RDF. However, to the best of our knowledge, this is the first
work focused on the extraction and study of cardinalities to detect inconsisten-
cies in RDF, through the application of outlier detection techniques. The concept
of outliers or anomaly detection is defined as “finding patterns in data that do
not conform to the expected normal behaviour” (see [2] for a survey). Under
the assumption that KBs are likely to be noisy and incomplete [18], there exist
several approaches that aim to enhance or refine their quality and completeness
(see Paulheim [16] for a recent survey). Among the most relevant to our work
are: [31] which applies unsupervised numerical outlier detection methods to DB-
pedia for detecting wrong values that are used as literal objects of a property;
and [4] that builds upon [31] by identifying sub-populations of instances where
the outlier detection works more accurately, and by using external datasets ac-
cessible from the owl:sameAs links. Our work differs from theirs in that they
focus on missing property values, not on their cardinality or multiplicity.

RDF schema discovery. Our goal falls into the broader area of schema discov-
ery. Völker and Niepert in [30] introduce a statistical approach where association
rule mining is used to generate OWL ontologies from RDF data, but consider
cardinality restrictions (upper bounds) only as future work. Similarly, in [8] the
authors extract type definitions described by profiles which consist of a property
vector, where each property is associated to a probability. A further analysis of

3 http://dublincore.org/documents/dc-dsp/
4 OWL allows the expression of cardinalities through the minCardinality,
maxCardinality, and cardinality restrictions.

5 http://docs.stardog.com/icv/icv-specification.html
6 http://spinrdf.org/
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semantic and hierarchical links between types is performed to extract a global
schema. Since most KBs are generated from semi- or un-structured data, [29]
analysed the case of DBpedia enrichment with axioms identified during the ex-
traction process from Wikipedia. Such axioms are identified with methods from
Inductive Logic Programming (ILP), like in [30]. Despite their bottom-up or ex-
tensional approach, similar to ours, such works aim to build or enrich ontologies
with missing relations, not considering any notion of cardinality nor their use to
analyse completeness and/or consistency. A related approach to detect cardinal-
ity in KBs is presented by Rivero et al. in [21], which uses SPARQL 1.1 queries to
automatically discover ontological models. Such models include types and prop-
erties, subtypes, domain, range, and minimum cardinalities of these properties.
However, the approach presented in [21] is not able to deal with the semantics
of data: both the existence of owl:sameAs axioms and outliers or errors in the
data are ignored. For these reasons, our work is orthogonal and complementary
to all aforementioned works.

3 Preliminaries

Below we first provide some preliminaries regarding RDF and its semantics.

RDF Model. Let R be the set of entities, B the set of blank nodes, P the set of
predicates, and L the set of literals. A finite knowledge base G is a set of triples
t := (s, p, o) ∈ (R∪B)×P×(R∪B∪L), where s is the subject, p is the predicate,
and o is the object of t. We define the functions PredG(τ) = {p | ∃s, o (s, p, o) ∈
G ∧ (s, rdf:type , τ) ∈ G} that returns a set of predicates appearing with in-
stances of entity type τ ; and TriplesG(p) = {(s, p, o) | ∃s, o (s, p, o) ∈ G} that
returns the triples in G with property p.

UNA 2.0. The unique name assumption (UNA) is a simplifying assumption
made in some ontology languages and description logics. It means that two dif-
ferent names always refer to different entities in the world [23]. On the one hand,
OWL default semantics does not adopt the UNA, thus two different constants
can refer to the same individual—a desirable behaviour in an environment such
as the Web. On the other hand, validation checking approaches in RDF usually
adopt a closed world assumption (CWA) with UNA, i.e., inferring a statement
to be false on the basis of failure to prove it, and if two entities are named
differently, they are assumed to be different entities. To deal with this, SHACL
defines the so-called UNA 2.0 which is a simple workaround where all entities are
treated as different, unless explicitly stated otherwise by owl:sameAs. From a
practical point of view, it is a desirable feature for mining algorithms to consider
the semantics of RDF graphs avoiding misinterpretations of the data. Figure 1
(left) shows an example where the adoption of normal UNA will lead to a count
of five different entities (i.e., ex:A, ex:B, ex:C, ex:D, ex:E), and for ex:A the
property ex:p1 would have cardinality 1. While adopting UNA 2.0 (Figure 1,
right) changes the counts: now we have four different entities (i.e., ex:A, ex:B,
ex:C, ex:E), and the cardinality of ex:p1 in ex:A is 2. Here, we call rewriting
the process of applying UNA 2.0 to an unnormalised KB.



Fig. 1: Example of UNA 2.0 as defined in SHACL.

Since the cardinality of a property is severely affected when owl:sameAs

axioms are not considered, hereafter, we adopt UNA 2.0 and satisfy this require-
ment, allowing us to correctly interpret the KB semantics.

4 Cardinality Bounds in RDF

In this section we introduce a definition of cardinality bounds in KBs that gen-
eralises the semantics of the definitions discussed in Section 3.

Cardinality (also known as multiplicity) covers a critical aspect of relational
data modelling, referring to the number of times an instance of one entity can be
related with instances of another entity. A cardinality bound is a restriction on
the number of elements in the relation. In particular, in KBs we have relations
between entities of a given type through properties, and we want to specify
bounds for such relationships. For example, we would like to express that a drug
has only one molecular formula, but can be associated to a finite set (of known
or unknown size, the latter denoted as ∞) of adverse drug reactions.

Definition 1 A cardinality bound in RDF knowledge bases restricts the number
of property values related with an entity in a given context (i.e., a particular type,
or the whole KB). Formally, a cardinality bound ϕ is an expression of the form
card(P, τ) = (min,max) where P ⊆ P, τ is an entity type, and where min ∈ N
and max ∈ N∪{∞} with min ≤ max. Here |P | denotes the number of properties
in ϕ, min is called the lower bound, and max the upper bound of ϕ. If τ is
defined (τ 6= ε), we say that ϕ is qualified; otherwise we say that ϕ is unqualified.

The semantics of this definition of cardinality bounds limits the maximum and
minimum count that a given set of properties can have in a given context as in
SHACL, DSP, ICV and OWL. The lower bound of a cardinality may take on
values in N, whilst upper bounds can be∞ to represent that there is an unknown
upper limit. An unqualified bound is independent of a type (context), i.e., it holds
for a set of properties independently of its context, whereas a qualified bound
holds only for a set of properties in combination with subject entities of a given
type. Herein, we focus on qualified constraints given their interestingness and
relevance for structural analyses of KBs.

Definition 2 Consider a KB G. We say that ϕ is a cardinality bound in G for
a set of properties Pϕ ⊆ P, a lower bound minϕ, and upper bound maxϕ, if

∀s ∈ (R∪ B) (minϕ ≤ |{p : p ∈ Pϕ ∧ ∃o (s, p, o) ∈ G}| ≤ maxϕ).



1 SELECT $this
2 WHERE {
3 $this $PROPERTY ?value .
4 }
5 } GROUP BY $this
6 HAVING (COUNT(?value) < $minCount)

Fig. 2: SPARQL 1.1 definition of a minimum cardinality constraint.

If ϕ is qualified to τ then to satisfy ϕ, G also needs to satisfy the condition that
∀s ∈ (R∪ B) (s, rdf:type, τ) ∈ G.

Although our approach is able to compute an upper bound cardinality, this
limit is uncertain when considering RDF’s open world assumption (OWA). For
instance, even when the data show that an entity person has maximum two
children, this might be wrong when considering other entities. More certain car-
dinality bounds can be mined from reliable or complete graphs usually existent
within specific domains. Therefore, we refer to cardinality bounds as “patterns”
when they are automatically extracted from raw KBs, and as “constraints” when
normatively assessed by a user and applied in order to restrict a KB.

In practice, cardinality bounds can be used to validate KBs using SPARQL
1.1 queries. For instance, Fig. 2 shows the SPARQL query proposed to validate a
lower bound minϕ ($minCount). The query represents restrictions on the num-
ber of values, ?value, that the $this node may have for the given property.
A validation result must be produced if the number of value nodes is less than
$minCount. Similarly, to validate an upper bound (maxϕ) restriction for a prop-
erty, we can change the HAVING condition to ‘>’. Note that SHACL, ShEx, and
other constraint languages only allow the definition of one condition at a time
per property. Therefore, to validate our cardinalities with multiple properties,
one must apply an SPARQL 1.1 query like the one in Fig. 2 independently for
each property and bound. In Section 5 we will show how a single SPARQL 1.1
query can be used to extract both minimum and maximum bounds at once.

Example 1 The following expressions define cardinality bounds for different
entity types in different domains.

1. card({mondial:name,mondial:elevation }, mondial:Volcano ) = (1, 1),
2. card({mondial:hasCity }, mondial:Country ) = (1,∞),
3. card({dcterms:contributor }, bibo:Book ) = (0,∞),
4. card({dcterms:language }, bibo:Book ) = (1, 2).

As suggested in the previous example, when the upper bound is unclear we use
∞ in the cardinality bound to express that uncertainty.

5 Mining Cardinality Patterns

In the following, we introduce our main algorithm for mining cardinality patterns
from KBs. We also present two different implementations: one based on SPARQL
1.1 that uses a graph databases approach to normalise and extract cardinalities;
and another based on Apache Spark that applies a MapReduce or divide-and-
conquer strategy to divide the data and run the steps in parallel.



Algorithm 1 CardBounds: Extraction of cardinality bounds.

Input: a knowledge base G; and a context τ
Output: a set Σ of cardinality bounds
1: G′ ← Normalise(G, τ)
2: P ← PredG′(τ) / Retrieve all predicates for entities of type τ
3: for all p ∈ P do
4: D ← TriplesG′(p) / Retrieve all triples with property p
5: M〈u, v〉 ← CardPatterns(D) / u is an entity, and v a cardinality
6: inliers← FilterOutliers(M.v)
7: Σ.add(card({p}, τ) = (MIN(inliers), MAX(inliers)))
8: end for

5.1 Algorithm

We present Algorithm 1 as an efficient solution to mine accurate and robust
cardinality patterns from any KB. This algorithm is designed to mine qualified
cardinalities, i.e., there is a context type; however, it can be easily extended to
mine unqualified cardinalities. From a data quality perspective, it is desirable
that the mined cardinalities bounds (see Section 4) are accurate and robust.
Algorithm 1 outputs a set of cardinality patterns, which are called “accurate”
because we consider the semantics of owl:sameAs axioms, and “robust” because
we perform an outliers detection and filtering over noisy cardinality counts.

Our mining algorithm has three main parts: (1) KB normalisation: repre-
sented by the Normalise(·) function, receives an (unnormalised or with multi-
ple equal entities) KB as input and applies an on-the-fly rewriting process to con-
sider the semantics of owl:sameAs (or other alike relation), where one can build
cliques from grouping equal entities. This function could be considered optional
though in cases where users want information about unnormalised bounds—
at the cost of accuracy. (2) Cardinalities extraction: performed by the function
CardPatterns(·), it is called to retrieve cardinality pairs (entity, cardinal-
ity) from the data for a given property. The cardinalities for a fixed property are
stored in a map which is after used to identify noisy values. (3) Outliers filtering:
represented by the FilterOutliers(·) function, receives a map of (entity, cardi-
nality) pairs and applies unsupervised univariate statistical methods to identify
and remove noisy or outside of a range values to ensure robustness.

Next, we present an example for the application of Algorithm 1, and describe
each of its part in more details in Sections 5.2 to 5.4.

Example 2 Let us consider a KB with entities ex:s1 and ex:s2, and prop-
erties ex:p1 and ex:p2. The Normalise function takes all triples in the KB
and replaces duplicates by one representative element equivalence type induced
by owl:sameAs-cliques. Then, for each property it extracts the cardinality val-
ues using the function CardPatterns to get values: [1, 1, 1] for ex:p1, and
[3, 3, 25] for ex:p2. Next, the function FilterOutliers determines that there
are no outliers for property ex:p1, but that a cardinality of 25 is an outlier for
ex:p2. Thus, 25 is removed from the patterns leaving [3, 3] as robust cardinal-
ities for ex:p2. Finally, the cardinality bounds (min, max) are extracted from
the remaining inlier cardinalities by using simple MIN and MAX functions.



Table 1: An axiomatisation for reduction on equality

(s, p, o) ∧ (s′, p′, o′) ∧
(s′, owl:sameAs , s)

(s, p, o), (s, p′, o′)

(s, p, o) ∧ (s′, p′, o′) ∧
(o′, owl:sameAs , o)

(s, p, o), (s′, p′, o)
(subject-equality) (object-equality)

5.2 Knowledge Bases Equality Normalisation

Knowledge bases contain different types of axioms, being owl:sameAs and alike
the most important when computing cardinalities. Regardless of the approach,
by not considering these axioms a method loses its accuracy and cannot ensure
that the cardinality bounds are consistent with the data. Unlike [21], we per-
form an on-the-fly normalisation of the graph in order to capture the semantics
of owl:sameAs axioms without having to modify the underlying data. A simple
SPARQL query using the COUNT operator will return two instances of ex:C1 in-
stead of the expected count 1 for the example in Figure 1 (left). To overcome this
issue, we propose an axiomatisation with two rules, namely, subject-equality and
object-equality (Table 1), where duplicated elements are replaced by one repre-
sentative element equivalence type induced by owl:sameAs. This normalisation
can be done replacing the underlying data [12] or on-the-fly (without modifi-
cation) when needed. However, if the underlying data is modified, the links to
other KBs stated by the owl:sameAs axioms are overwritten and lost. Instead,
here we follow an on-the-fly overwrite (line 1 in Algorithm 1) which performs
the modifications in memory. This was also used by Schenner et al. in [25]. The
representatives are selected from the so-called owl:sameAs-cliques, which are
sets of entities all of which are equal to each other [12]. In practice, the axioma-
tisation of Table 1 can be implemented on-the-fly either by using SPARQL 1.1
or programmatically. We briefly introduce these two options as follows:

SPARQL rewrite. We make use of the nested SPARQL 1.1 query in Figure 4,
which contains three sub-queries and aims to obtain (entity, cardinality) pairs for
a given property and entity type (line 3). Embedded in SQ-1 are SQ-2 and SQ-3

performing the clique generations for subject and object, respectively. Sub-query
SQ-2 applies the subject-equality rule, and sub-query SQ-3 applies the object-
equality rule. In a clique generation, a graph search is done in all directions of the
graph to find equal entities, which incurs in a high complexity. For each clique
found, a representative is selected, thus omitting all “clone” entities. Intuitively,
the query used here can be seen as complex and resource demanding. Hence, we
also propose a faster solution that works outside of a SPARQL endpoint.

Programmatic rewrite. We can also frame the extraction of cardinality pat-
terns as the well-known words count problem. So, we can easily parallelise the al-
gorithm using frameworks such as Apache Spark7. By using Spark and the filer
and map operations, we implemented a parallel rewrite, where the owl:sameAs-
cliques are generated and used to normalise the KB triple by triple (see Figure 3,
left). We generate the owl:sameAs-cliques as follows: for each (s, owl:sameAs , o)

7 http://spark.apache.org/ (version 2.1.0)

http://spark.apache.org/


Fig. 3: Cardinality patterns extraction using Apache Spark.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX owl: <http://www.w3.org/2002/07/owl#>
3 SELECT ?first_subj (COUNT(DISTINCT ?first_obj) AS ?nbValues) WHERE {
4 { SELECT DISTINCT ?first_subj ?first_obj WHERE { % (SQ-1)
5 ?subj $property ?obj .
6 { SELECT ?subj ?first_subj WHERE { % (SQ-2)
7 ?subj a $type .
8 ?subj ((owl:sameAs|^owl:sameAs)*) ?first_subj .
9 ?notfirst ((owl:sameAs|^owl:sameAs)*) ?first_subj .

10 FILTER (STR(?notfirst) < STR(?first_subj))
11 } FILTER(!BOUND(?notfirst))
12 }}
13 { SELECT ?obj ?first_obj WHERE { % (SQ-3)
14 ?obj ((owl:sameAs|^owl:sameAs)*) ?first_obj .
15 ?notfirst ((owl:sameAs|^owl:sameAs)*) ?first_obj .
16 FILTER (STR(?notfirst) < STR(?first_obj))
17 } FILTER(!BOUND(?notfirst))
18 }}
19 }}
20 } GROUP BY ?first_subj

Fig. 4: Query the cardinality of a property for every entity of a given type.

triple we lexically compare s and o and select the minimum (e.g., s), which be-
comes the representative; add a mapping from the minimum to the other (e.g.,
from s to o); if the no-minimum (e.g., o) was the representative of other entities,
then we update their mappings in cascade with the new representative (e.g., s).
We then apply a map operation over each initial triple and overwrite it according
to the owl:sameAs-cliques to obtain G′ in O(1).

5.3 Detection of Cardinality Patterns

After the normalisation step, cardinalities can be collected for each property
(line 5 in Algorithm 1) ensuring their accuracy, which is a major difference w.r.t.
previous approaches such as Rivero et al. [21]. In the SPARQL-based approach,
Figure 4 shows a query which performs both the normalisation of G and the
detection of cardinality patterns in one place. Complex SPARQL queries are
hard to evaluate and optimise [27], making this approach very inefficient and



poorly scalable. On the other hand, the Spark-based approach can make use of
multiple machines to scale and process the KB in splits. We show a comparison of
both approaches latter in Section 6. Regardless of the approach, the output of the
cardinality extraction is a map of (entity, cardinality) pairs for a given property
and type. These cardinalities already could be taken as cardinality patterns by
users. However, several works have shown that KBs frequently contain noise
and outliers (e.g., [7,17,16]). In order to address this, we carry out a filtering of
outliers from the cardinalities, which is described in the next section.

5.4 Outlier Detection and Filtering

Considering the adverse effects that outliers could have in the method described
so far, we now present techniques that can be used to detect and remove out-
liers (line 6 in Algorithm 1). Several supervised and unsupervised approaches
can be used for the detection of outliers in numerical data (see [18] for details);
however, we did not find any labelled dataset for valid cardinality values. There-
fore, we only consider unsupervised approaches for univariate data. We address
the detection of outliers in a sequence of numbers as a statistical problem. In-
terestingly, outlier detection approaches determine a lower and upper bound
on the range of data, similarly to the semantics of a cardinality bound. The
extreme studentized deviation (ESD) identifier [22] is one of the most popular
approaches and computes the mean µ and standard deviation σ values and con-
siders as outlier any value outside of the interval [µ − t · σ, µ + t · σ], where
t = 3 is usually used. The problem with ESD is that both the mean and the
standard deviation are themselves sensitive to the presence of outliers in the
data. Hampel identifier [18] appears as an option, where the mean is replaced by
the median med, and the standard deviation by the median absolute deviation
(MAD). The range for outliers is now: [med− t ·MAD,med+ t ·MAD]. Since the
median and MAD are more resistant to the influence of outliers than the mean
and standard deviation, Hampel identifier is generally more effective than ESD.
Although, Hampel sometimes could be considered too aggressive, declaring too
many outliers [18]. Boxplot appears as a third option, and defines the range:
[Q1− c · IQD,Q3 + c · IQD], where Q1 and Q3 are the lower and upper quar-
tiles, respectively, and IQD = Q3−Q1 is the interquartile distance—a measure
similar to the standard deviation. The parameter c is similar to t in Hampel and
ESD, and is commonly set to c = 1.5. Boxplot is better suited for distributions
that are moderately asymmetric, because it does not depends on an estimated
“centre” of the data. Thus, in our evaluation we use boxplot rule to determine
cardinality outliers.

6 Evaluation

Next, we evaluate the application of our mining algorithm in its two variants
against real-world and synthetic KBs. After, we use the mined cardinality bounds
to analyse the notions of completeness and consistency of KBs.



Table 2: Datasets characteristics

Dataset � triples � types � prop. � sameAs

OpenCyc 2,413,894 7,613 165 360,014
UOBM 2,217,286 40 29 0
British National Library 210,820 24 45 14,761
Mondial 186,534 27 60 0
New York Times People 103,496 1 20 14,884

6.1 Settings

Datasets. We used five datasets with different number of triples and
owl:sameAs axioms. The chosen datasets are diverse in domain, features, and
represent real-world and synthetic data. We present their characteristics in Ta-
ble 2, and describe them as follows:

– OpenCyc8 is a large general KB released in 2012 that contains hundreds
of thousands of terms in the domain of human knowledge covering places,
organisations, business related things, people among others.

– UOBM9 is a synthetic dataset that extends the Lehigh University Bench-
mark (LUMB), a university domain ontology, that contains information
about faculties and students.

– British National Library10 is a dataset published by the National Library of
the UK (second largest library in the world) about books and serials.

– Mondial11 is a database compiled from geographical Web data sources such
as CIA World Factbook, and Wikipedia among others.

– New York Times People12 is a compilation of the most authoritative people
mentioned in news of the New York Times newspaper since 2009.

Test settings. We implemented our cardinality mining Algorithm 1 using
Python 3.4 and Apache Spark 2.1.0. We use a Intel Core i7 4.0 GHz machine
with 32 GB of RAM running Linux kernel 3.2 to run experiments on different
KBs. Although Spark can run on multiple machines, we only tested it on a single
machine using multiple parallel processes—one per core using 8 cores in total.

6.2 Results

First, we quantitatively compare the runtime of Algorithm 1 with both imple-
mentations, SPARQL and Spark, to normalise (rewrite) KBs, retrieve, and filter
cardinality bounds. We then analyse qualitatively the use of the identified cardi-
nality bounds to assess two crucial notions of KBs and databases: completeness
and consistency.

8 http://www.cyc.com/platform/opencyc
9 https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/

10 http://www.bl.uk/bibliographic/download.html
11 http://www.dbis.informatik.uni-goettingen.de/Mondial/
12 https://datahub.io/dataset/nytimes-linked-open-data

http://www.cyc.com/platform/opencyc
https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
http://www.bl.uk/bibliographic/download.html
http://www.dbis.informatik.uni-goettingen.de/Mondial/
https://datahub.io/dataset/nytimes-linked-open-data


Quantitative Evaluation. Intuitively, based on the scalability of Spark, one
can foresee that the parallelised variant of our algorithm (Figure 3) will outper-
form the other that uses SPARQL. To test this we ran both implementations
on the British National Library (BNL) and Mondial datasets, where only the
first contains owl:sameAs axioms. For BNL, we considered the type τ = Book
with 7 predicates and obtained average runtime of 253.908 sec for the SPARQL
implementation, and 15.634 sec for the Spark one. This shows that the Spark im-
plementation is 16x faster than using SPARQL, while performing the same task
on BNL dataset. For Mondial, we considered the type τ = River with 8 predicates
and obtained average runtime of 117.739 sec for the SPARQL implementation,
and 2.948 sec for the Spark one. This shows that the Spark implementation is 40x
faster than using SPARQL, while performing the same task on Mondial dataset.
It is worth pointing out that the times on Mondial dataset are lower than for
BNL because of the lower number of instances and the absence of owl:sameAs

axioms. Finally, our experiments show that the outlier detection method (i.e.,
boxplot) does not add a significant overhead to the whole process and scales well
for different data sizes.

Qualitative Evaluation. The characteristics of the datasets range between 1
up to 7,613 types and 20 up to 165 properties. To keep our study manageable,
we selected randomly one entity type per dataset (5 in total) and five proper-
ties per type (25 in total). For each type, we show (see Table 3) the number
of owl:sameAs-cliques generated, and the number of triples before and after
the rewriting process. To show the benefits of studying cardinality constraints
derived from automatically discovered bounds in KBs, we bring to the fore their
use on the realm of completeness and consistency. We evaluate each entity type
in these two dimensions from a common sense point of view. Because the consid-
eration of cardinality bounds is application dependent, here we try to abstract
(without loss of generality) from individual use cases. The cardinalities presented
herein are considered robust bound assessed to be a constraint by a knowledge
engineer. We consider that a property p in the context of a type τ is complete
given a cardinality constraint if every entity s of type τ has the ‘right number’
of triples (s, p, o), and incomplete otherwise. For example, a constraint might be
that all books must have at least one property title, but the same it is not
true for property comment. Also, we consider that a property p in the context
of a type τ is consistent if the triples with predicate p and subject s (of type τ)
comply with the cardinality bounds, and inconsistent otherwise. For example, a
constraint might be that all books must have always 1 title; however, we found
five books which violate this constraint having 2 titles. Based on a set of verified
discovered robust bounds, in Table 3 we show the ratios of completeness and
consistency found in the 5 properties per type. For example, 2/5 completeness
ratio in the entity type Book indicates that 2 out of 5 properties presented com-
plete data, and the rest was incomplete. We did the same to measure consistency.
In particular, we noticed a strong consistency on synthetic datasets, where it is
normal to define an ontology that all instances generated will satisfy.



Table 3: Evaluation of completeness and consistency per dataset: one type and
five random properties per type.

Class � sA-Cliques � Triples
Befo./After

Complet.
Ratio

Consist.
Ratio

Fashion Model 118 1060/928 2/5 5/5
Research Assistant 0 135197/135197 4/5 5/5
Book 4515 97101/83556 2/5 3/5
Country 0 21766/21766 1/5 4/5
Concept 4979 58685/48780 2/5 5/5

1 card({mondial:name}, mondial:Volcano)=(1,1)
2 card({mondial:elevation}, mondial:Volcano)=(1,1)
3 card({mondial:longitude}, mondial:Volcano)=(1,1)
4 card({mondial:latitude}, mondial:Volcano)=(1,1)
5 card({mondial:locatedIn}, mondial:Volcano)=(1,3)
6 card({mondial:lastEruption}, mondial:Volcano)=(0,1)

Fig. 5: Cardinality bounds subset for entity type mondial:Volcano.

Figure 5 shows a subset of the cardinality bounds extracted for the entity
type Volcano in Mondial KB. At a first glance, the extracted patterns correspond
to what a knowledge engineer could expect: all volcanoes have a name and lat-
itude/longitude coordinates, not all have information about their last eruption,
and they have 1 to 3 locations for those that are in the intersection of different
countries. Notice that even when we obtain a cardinality for mondial:locatedIn
with upper bound 3, this cannot be considered as a constraint and used for valida-
tion until it is assessed by a user. We found a similar situation with the property
mondial:hasCity in the type mondial:Country, where the robust cardinality
identified was card({mondial:hasCity }, mondial:Country ) = (1, 31). How-
ever, based on that upper limit, there are 25 identified outliers, which are not
real outliers. For instance, we have China with 306 cities, USA with 250 cities,
Brazil with 210 cities, Russia with 171 cities, and India with 99 cities, which are
outside of the range considered as robust. Based on this information, data users
and knowledge engineers could be able to determine whether a given cardinality
pattern should be promoted to become a constraint (i.e., verified discovered ro-
bust bounds) or not. We argue that by detecting cardinality inconsistencies and
incompleteness we can determine structural problems at the instance level. This
can be used to guide repair methods and move towards better quality of KBs.

7 Conclusions and Outlook

KBs contain implicit patterns and constraints not always stated in ontologies
or schemata neither clear for data creators and consumers. In this paper, we
have introduced an extensional approach to the discovery of so-called cardinality
bounds in KBs. Cardinality bounds are proposed as a solution for the need
to (partially) cope with the lack of explicit structure in KBs. We presented
two implementations of our approach, namely SPARQL- and Spark-based, and



evaluated them against five different datasets including real-world and synthetic
data. Our analysis shows that cardinality bounds can be mined efficiently, and
are useful to understand the structure of data at a glance, and also to analyse
the completeness and consistency of data.

Future work in this area could go into various directions. First, we notice
that cardinality bounds give an indication about the completeness of data, and
thus can be used to guide methods for knowledge completion or link predic-
tion [5]. Second, further research is required on the assessment of the discovered
cardinality bounds by users, and whether they can be promoted as normative
constraints that could be used for validation [19]. Finally, the structure provided
by cardinality patterns could serve to generate schema graphs that represent
the characteristics that KBs naturally exhibit, unlocking management problems
such as query optimisation [27].
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