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Abstract. Learning embeddings of entities and relations using neural
architectures is an effective method of performing statistical learning on
large-scale relational data, such as knowledge graphs. In this paper, we
consider the problem of regularizing the training of neural knowledge
graph embeddings by leveraging external background knowledge. We
propose a principled and scalable method for leveraging equivalence and
inversion axioms during the learning process, by imposing a set of model-
dependent soft constraints on the predicate embeddings. The method has
several advantages: i) the number of introduced constraints does not de-
pend on the number of entities in the knowledge base; ii) regularities
in the embedding space effectively reflect available background knowl-
edge; iii) it yields more accurate results in link prediction tasks over
non-regularized methods; and iv) it can be adapted to a variety of mod-
els, without affecting their scalability properties. We demonstrate the
effectiveness of the proposed method on several large knowledge graphs.
Our evaluation shows that it consistently improves the predictive accu-
racy of several neural knowledge graph embedding models (for instance,
the MRR of TransE on WordNet increases by 11%) without compro-
mising their scalability properties.

1 Introduction

Knowledge graphs are graph-structured knowledge bases, where factual knowl-
edge is represented in the form of relationships between entities: they are pow-
erful instruments in search, analytics, recommendations, and data integration.
This justified a broad line of research both from academia and industry, re-
sulting in projects such as DBpedia (Auer et al., 2007), Freebase (Bollacker
et al., 2007), YAGO (Suchanek et al., 2007), NELL (Carlson et al., 2010), and
Google’s Knowledge Graph and Knowledge Vault projects (Dong et al., 2014).

However, despite their size, knowledge graphs are often very far from being
complete. For instance, 71% of the people described in Freebase have no known
place of birth, 75% have no known nationality, and the coverage for less used
relations can be even lower (Dong et al., 2014). Similarly, in DBpedia, 66% of



the persons are also missing a place of birth, while 58% of the scientists are
missing a fact stating what they are known for (Krompaß et al., 2015).

In this work, we focus on the problem of predicting missing links in large
knowledge graphs, so to discover new facts about the world. In the literature, this
problem is referred to as link prediction or knowledge base population: we refer
to Nickel et al. (2016) for a recent survey on machine learning-driven solutions
to this problem.

Recently, neural knowledge graph embedding models (Nickel et al., 2016) –
neural architectures for embedding entities and relations in continuous vector
spaces – have received a growing interest: they achieve state-of-the-art link pre-
diction results, while being able to scale to very large and highly-relational
knowledge graphs. Furthermore, they can be used in a wide range of appli-
cations, including entity disambiguation and resolution (Bordes et al., 2014),
taxonomy extraction (Nickel et al., 2016), and query answering on probabilistic
databases (Krompaß et al., 2014). However, a limitation in such models is that
they only rely on existing facts, without making use of any form of background
knowledge. At the time of this writing, how to efficiently leverage preexisting
knowledge for learning more accurate neural knowledge graph embeddings is
still an open problem (Wang et al., 2015).

Contribution – In this work, we propose a principled and scalable method
for leveraging external background knowledge for regularising neural knowledge
graph embeddings. In particular, we leverage background axioms in the form
p ≡ q and p ≡ q−, where the former denotes that relations p and q are equivalent,
such as in the case of relations partOf and componentOf, while the latter
denotes that the relation p is the inverse of the relation q, such as in the case of
relations partOf and hasPart. Such axioms are used for defining and imposing
a set of model-dependent soft constraints on the relation embeddings during the
learning process. Such constraints can be considered as regularizers, reflecting
available prior knowledge on the distribution of embedding representations of
relations.

The proposed method has several advantages: i) the number of introduced
constraints is independent on the number of entities, allowing it to scale to
large and Web-scale knowledge graphs with millions of entities; ii) relationships
between relation types in the embedding space effectively reflect available back-
ground schema knowledge; iii) it yields more accurate results in link prediction
tasks than state-of-the-art methods; and iv) it is a general framework, applica-
ble to a variety of embedding models. We demonstrate the effectiveness of the
proposed method in several link prediction tasks: we show that it consistently
improves the predictive accuracy of the models it is applied to, without negative
impact on their scalability properties.

2 Preliminaries

Knowledge Graphs – A knowledge graph is a graph-structured knowledge
base, where factual information is stored in the form of relationships between



entities. Formally, a knowledge graph G , {〈s, p, o〉} ⊆ E × R × E is a set of
〈s, p, o〉 triples, each consisting of a subject s, a predicate p and an object o, and
encoding the statement “s has a relationship p with o”. The subject and object
s, o ∈ E are entities, p ∈ R is a relation type, and E ,R respectively denote the
sets of all entities and relation types in the knowledge graph.

Example 1. Consider the following statement: “Ireland is located in Northern
Europe, and shares a border with the United Kingdom.” It can be expressed by
the following triples:

Subject Predicate Object

Ireland locatedIn Northern Europe
Ireland neighborOf United Kingdom

A knowledge graph can be represented as a labelled directed multigraph, in
which each triple is represented as an edge connecting two nodes: the source and
target nodes represent the subject and object of the triple, and the edge label
represents the predicate.

Knowledge graph adhere to the Open World Assumption (Hayes and Patel-
Schneider, 2014): a missing triple does not necessarily imply that the corre-
sponding statement holds false, but rather that its truth value is unknown,
i.e. it cannot be observed in the graph. For instance, the fact that the triple
〈United Kingdom,neighborOf, Ireland〉 is missing from the graph in Ex. 1
does not imply that the United Kingdom does not share a border with Ireland,
but rather that we do not know whether this statement is true or not.

Equivalence and Inversion Axioms – Knowledge graphs are usually en-
dowed with additional background knowledge, describing classes of entities and
their properties and characteristics, such as equivalence and symmetry. In this
work, we focus on two types of logical axioms in the form p ≡ q and p ≡ q−,
where p, q ∈ R are predicates.

A largely popular knowledge representation formalism for expressing schema
axioms is the OWL 2 Web Ontology language (Schneider, 2012). According to
the OWL 2 RDF-based semantics, the axiom p ≡ q implies that predicates p
and q share the same property extension, i.e. if 〈s, p, o〉 is true then 〈s, q, o〉 is
also true (and vice-versa). Similarly, the axiom p ≡ q− implies that the predicate
q is the inverse of the predicate p, i.e. if 〈s, p, o〉 is true then 〈o, q, s〉 is also true
(and vice-versa). It is possible to express that a predicate p ∈ R is symmetric
by using the axiom p ≡ p−. Such axioms can be expressed by the OWL 2
owl:equivalentProperty and owl:inverseOf constructs.

Example 2. Consider the following statement: “The relation locatedIn is the
inverse of the relation locationOf, and the relation neighborOf is sym-
metric.” It can be encoded by the axioms locatedIn ≡ locationOf− and
neighborOf ≡ neighborOf−.



Link Prediction – As mentioned earlier, real world knowledge graphs are often
largely incomplete. Link prediction in knowledge graphs consists in identifying
missing triples (facts) in order to discover new facts about a domain of interest.
This task is also referred to as knowledge base population in literature. We refer
to Nickel et al. (2016) for a recent survey on link prediction methods.

The link prediction task can be cast as a learning to rank problem, where we
associate a prediction score φspo to each triple 〈s, p, o〉 as follows:

φspo , φ(〈s, p, o〉;Θ),

where the score φspo represents the confidence of the model that the statement
encoded by the triple 〈s, p, o〉 holds true, φ(·;Θ) denotes a triple scoring function,
with φ : E ×R×E → R, and Θ represents the parameters of the scoring function
and thus of the link prediction model. Triples associated with a higher score by
the link prediction model have a higher probability of encoding a true statement,
and are thus considered for a completion of the knowledge graph G.

3 Neural Knowledge Graph Embedding Models

Recently, neural link prediction models received a growing interest (Nickel et al.,
2016). They can be interpreted as simple multi-layer neural networks, where
given a triple 〈s, p, o〉, its score φ(〈s, p, o〉;Θ) is given by a two-layer neural net-
work architecture, composed by an encoding layer and a scoring layer.

Encoding Layer – in the encoding layer, the subject and object entities s and
o are mapped to distributed vector representations es and eo, referred to as
embeddings, by an encoder ψ : E 7→ Rk such that es , ψ(s) and eo , ψ(o).
Given an entity s ∈ E , the encoder ψ is usually implemented as a simple
embedding layer ψ(s) , [Ψ ]s ∈ Rk, where Ψ ∈ R|E|×k is an embedding ma-
trix (Nickel et al., 2016). The distributed representations in this layer can be
either pre-trained (Baroni et al., 2012) or, more commonly, learnt from data
by back-propagating the link prediction error to the embeddings (Bordes
et al., 2013; Yang et al., 2015; Trouillon et al., 2016; Nickel et al., 2016).

Scoring Layer – in the scoring layer, the subject and object representations
es and eo are scored by a predicate-dependent function φθp(es, eo) ∈ R,
parametrised by θ.

The architecture of neural link prediction models can be summarized as follows:

φ(〈s, p, o〉;Θ) , φθp(es, eo)

es, eo , ψ(s), ψ(o),
(1)

and the set of parameters Θ corresponds to Θ , {θ,Ψ}. Neural link prediction
model generate distributed embedding representations for all entities in a knowl-
edge graph, as well as a model of determining whether a triple is more likely than
others, by means of a neural network architecture. For such a reason, they are



also referred to as neural knowledge graph embedding models (Yang et al., 2015;
Nickel et al., 2016).

Several neural link prediction models have been proposed in the literature.
For brevity, we overview a small subset of these, namely the Translating Em-
beddings model TransE (Bordes et al., 2013); the Bilinear-Diagonal model
DistMult (Yang et al., 2015); and its extension in the complex domain Com-
plEx (Trouillon et al., 2016). Unlike previous models, such models can scale
to very large knowledge graphs, thanks to: i) a space complexity that grows
linearly with the number of entities |E| and relations |R|; and ii) efficient and
scalable scoring functions and parameters learning procedures. In the following,
we provide a brief and self-contained overview of such neural knowledge graph
embedding models.

TransE – The scoring layer in TransE is defined as follows:

φp(es, eo) , −‖es + rp − eo‖ ∈ R,

where es, eo ∈ Rk represent the subject and object embeddings, rp ∈ Rk is a
predicate-dependent translation vector, ‖ · ‖ denotes either the L1 or the L2

norm, and ‖x− y‖ denotes the distance between vectors x and y. In TransE,
the score φp(es, eo) is then given by the similarity between the translated subject
embedding es + rp and the object embedding eo.

DistMult – The scoring layer in DistMult is defined as follows:

φp(es, eo) , 〈rp, es, eo〉 ∈ R,

where, given x,y, z ∈ Rk, 〈x,y, z〉 ,
∑k
i=1 xiyizi denotes the standard component-

wise multi-linear dot product, and rp ∈ Rk is a predicate-dependent vector.

ComplEx – The recently proposed ComplEx is related to DistMult, but
uses complex-valued embeddings while retaining the mathematical definition of
the dot product. The scoring layer in ComplEx is defined as follows:

φp(es, eo) , Re
(
〈rp, es, eo〉

)
= 〈Re

(
rp
)
,Re (es) ,Re (eo)〉+ 〈Re

(
rp
)
, Im (es) , Im (eo)〉

+ 〈Im
(
rp
)
,Re (es) , Im (eo)〉 − 〈Im

(
rp
)
, Im (es) ,Re (eo)〉 ∈ R,

where given x ∈ Ck, x denotes the complex conjugate of x1, while Re (x) ∈ Rk
and Im (x) ∈ Rk denote the real part and the imaginary part of x, respectively.

4 Training Neural Knowledge Graph Embedding Models

1 Given x ∈ C, its complex conjugate is x , Re (x)− iIm (x).



Algorithm 1 Learning the model parameters Θ via Projected SGD
Require: Batch size n, epochs τ , learning rates η ∈ Rτ
Ensure: Optimal model parameters Θ̂
1: for i = 1, . . . , τ do
2: ee ← ee/‖ee‖, ∀e ∈ E
3: {Sample a batch of positive and negative examples B = {(t, t̃)}}
4: B ← SampleBatch(G, n)
5: {Compute the gradient of the loss function J on examples B}
6: gi ← ∇

∑
(t,t̃)∈B

[
γ − φ(t;Θi−1) + φ(t̃;Θi−1)

]
+

7: {Update the model parameters via gradient descent}
8: Θi ← Θi−1 − ηigi
9: end for
10: return Θτ

In neural knowledge graph embedding models, the parameters Θ of the em-
bedding and scoring layers are learnt from data. A widely popular strategy for
learning the model parameters is described in Bordes et al. (2013); Yang et al.
(2015); Nickel et al. (2016). In such works, authors estimate the optimal param-
eters by minimizing the following pairwise margin-based ranking loss function
J defined on parameters Θ:

J (Θ) ,
∑
t+∈G

∑
t−∈C(t+)

[
γ − φ(t+;Θ) + φ(t−;Θ)

]
+

(2)

where [x]+ = max{0, x}, and γ ≥ 0 specifies the width of the margin. Positive
examples t+ are composed by all triples in G, and negative examples t− are
generated by using the following corruption process:

C(〈s, p, o〉) , {〈s̃, p, o〉 | s̃ ∈ E} ∪ {〈s, p, õ〉 | õ ∈ E},

which, given a triple, generates a set of corrupt triples by replacing its subject
and object with all other entities in G. This method of sampling negative exam-
ples is motivated by the Local Closed World Assumption (LCWA) (Dong et al.,
2014). According to the LCWA, if a triple 〈s, p, o〉 exists in the graph, other
triples obtained by corrupting either the subject or the object of the triples not
appearing in the graph can be considered as negative examples. The optimal
parameters can be learnt by solving the following minimization problem:

minimize
Θ

J (Θ)

subject to ∀e ∈ E : ‖ee‖ = 1,
(3)

where Θ denotes the parameters of the model. The norm constraints on the entity
embeddings prevent to trivially solve the optimization problem by increasing the
norm of the embedding vectors (Bordes et al., 2014). The loss function in Eq. (2)
will reach its global minimum 0 iff, for each pair of positive and negative examples
t+ and t−, the score of the (true) triple t+ is higher with a margin of at least



γ than the score of the (missing) triple t−. Following Yang et al. (2015), we use
the Projected Stochastic Gradient Descent (SGD) algorithm (outlined in Alg.1)
for solving the loss minimization problem in Eq. (3), and AdaGrad (Duchi et al.,
2011) for automatically selecting the optimal learning rate η at each iteration.

5 Regularizing via Background Knowledge

We now propose a method for incorporating background schema knowledge,
provided in the form of equivalence and inversion axioms between predicates, in
neural knowledge graph embedding models. Formally, let A1 and A2 denote the
following two sets of equivalence and inversion axioms between predicates:

A1 , {p1 ≡ q1, . . . , pm ≡ qm} A2 , {pm+1 ≡ q−m+1, . . . , pn ≡ q−n } (4)

where 1 ≤ m ≤ n, and ∀i ∈ {1, . . . , n} : pi, qi ∈ R. Recall that each axiom p ≡ q
encodes prior knowledge that predicates p and q are equivalent, i.e. they share
the same extension. Similarly, each axiom p ≡ q− encodes prior knowledge that
the predicate p and the inverse of the predicate q are equivalent.

Equivalence Axioms – Consider the case in which predicates p ∈ R and
q ∈ R are equivalent, as encoded by the axiom p ≡ q. This implies that a model
with scoring function φ( · ;Θ) and parameters Θ should assign the same scores
to the triples 〈s, p, o〉 and 〈s, q, o〉, for all entities s, o ∈ E :

φ(〈s, p, o〉;Θ) = φ(〈s, q, o〉;Θ) ∀s, o ∈ E . (5)

A simple method for enforcing the constraint in Eq. (5) during the param-
eter learning process consists in solving the loss minimization problem in Eq.
(3) under the additional equality constraints in Eq. (5). However, this solution
results in introducing O(|E|2) constraints in the optimization problem in Eq.
(3), a quantity that grows quadratically with the number of entities |E|. This
solution may not be feasible for very large knowledge graphs, which typically
contain millions of entities or more, while |R| is usually several orders of magni-
tude lower. A more efficient method consists in enforcing the model to associate
similar embedding representations to both p and q, i.e. rp = rq. This solution
can be encoded by a single constraint, satisfying all identities in Eq. (5).

Inversion Axioms – Consider the case in which the predicate p (e.g. partOf)
and the inverse of the predicate q (e.g. hasPart) are equivalent, as encoded by
the axiom p ≡ q−. This implies that a model with scoring function φ( · ;Θ) and
parameters Θ should assign the same scores to the triples 〈s, p, o〉 and 〈o, q, s〉,
for all entities s, o ∈ E :

φ(〈s, p, o〉;Θ) = φ(〈o, q, s〉;Θ) ∀s, o ∈ E . (6)

Also in this case we can enforce the identity in Eq. (6) through a single con-
straint on the embeddings of predicates p and q. In the following, we derive the



constraints for the models TransE, DistMult and ComplEx. The constraints
rely on a function Φ( · ) that applies a model-dependent transformation to the
predicate embedding rq.

TransE: We want to enforce that, for any pair of s and o embedding vectors
es, eo ∈ Rk, the score associated to the triples 〈s, p, o〉 and 〈o, q, s〉 are the
same. Formally:

‖es + rp − eo‖ = ‖eo + rq − es‖, ∀es, eo ∈ Rk (7)

where ‖ · ‖ denotes either the L1 or the L2 norm.

Theorem 1. The identity in Eq. (7) is satisfied by imposing:

rp = Φ(rq) such that Φ(rq) , −rq.

Proof For any es, eo ∈ Rk, the following result holds:

‖es + rp − eo‖ = ‖eo − rp − es‖,

where ‖ · ‖ is a norm on Rk. Because of the absolute homogeneity property
of norms we have that, for any α ∈ R and x ∈ Rk:

‖αx‖ = |α| ‖x‖.

It follows that:

‖es + rp − eo‖ = ‖ − 1
(
eo − rp − es

)
‖

= |−1| ‖eo − rp − es‖ (absolute homogeneity property)
= ‖eo − rp − es‖.

DistMult: We want to enforce that:

〈rp, es, eo〉 = 〈rq, eo, es〉, ∀es, eo ∈ Rk (8)

A limitation in DistMult, addressed by ComplEx, is that its scoring func-
tion is symmetric, i.e. it assigns the same score to 〈s, p, o〉 and 〈o, p, s〉, due
to the commutativity of the element-wise product. The identity in Eq. (8) is
thus satisfied by imposing rp = Φ(rq) such that Φ(rq) , rq.

ComplEx: We want to enforce that:

Re
(
〈rp, es, eo〉

)
= Re

(
〈rq, eo, es〉

)
, ∀es, eo ∈ Ck. (9)

The identity in Eq. (9) can be satisfied as follows:

Theorem 2. The identity in Eq. (9) is satisfied by imposing:

rp = Φ(rq) such that Φ(rq) , rq.



Proof For any es, eo ∈ Ck, the following result holds:

Re
(
〈rp, es, eo〉)

)
= Re

(
〈rp, eo, es〉)

)
.

Consider the following steps:

Re
(
〈rp, es, eo〉

)
= Re

(
〈rp, es, eo〉

)
(since (x) = x)

= Re
(
〈rp, eo, es〉

)
(commutative property)

= Re
(
〈rp, eo, es〉

)
(since Re (x) = Re (x) ).

Similar procedures for deriving the function Φ(·) can be used in the context of
other knowledge graph embedding models.

5.1 Regularizing Via Soft Constraints

One solution for integrating background schema knowledge consists in solving the
loss minimization problem in Eq. (3) under additional hard equality constraints
on the predicate embeddings, for instance by enforcing rp = rq for all p ≡ q ∈ A1,
and rp = Φ(rq) for all p ≡ q− ∈ A2. However, this solution does not cover cases
in which two predicates are not strictly equivalent but still share very similar
semantics, such as in the case of predicates marriedWith and partnerOf.

A more flexible solution consists in relying on soft constraints (Meseguer
et al., 2006), which are used to formalize desired properties of the model rather
than requirements that cannot be violated: we propose relying on weighted soft
constraints for encoding our background knowledge on latent predicate repre-
sentations.

Formally, we extend the loss function J described in Eq. (2) with an addi-
tional penalty term RS for enforcing a set of desired relationships between the
predicate embeddings. This process leads to the following novel loss function JS :

RS(Θ) ,
∑

p≡q∈A1

D
[
rp‖rq

]
+

∑
p≡q−∈A2

D
[
rp‖Φ(rq)

]
JS(Θ) , J (Θ) + λRS(Θ),

(10)

where λ ≥ 0 is the weight associated with the soft constraints, and D
[
x‖y

]
is

a divergence measure between two vectors x and y. In our experiments, we use
the Euclidean distance as divergence measure, i.e. D

[
x‖y

]
, ‖x− y‖22.

In particular, RS in Eq. (10) can be thought of as a schema-aware regular-
ization term, which encodes our prior knowledge on the distribution of predicate
embeddings. Note that the formulation in Eq. (10) allows us to freely interpolate
between hard constraints (λ = ∞) and the original models represented by the
loss function J (λ = 0), permitting to adaptively specify the relevance of each
logical axiom in the embedding model.



Table 1: Statistics for the datasets used in experiments
Dataset |E| |R| #Training #Validation #Test

WordNet 40,943 18 141,442 5,000 5,000
DBpedia 32,510 7 289,825 5,000 5,000
YAGO3 123,182 37 1,079,040 5,000 5,000

6 Related Works

How to effectively improve neural knowledge graph embeddings by making use
of background knowledge is a largely unexplored field. Chang et al. (2014);
Krompass et al. (2014); Krompaß et al. (2015) make use of type information
about entities for only considering interactions between entities belonging to
the domain and range of each predicate, assuming that type information about
entities is complete. In Minervini et al. (2016), authors assume that type infor-
mation can be incomplete, and propose to adaptively decrease the score of each
missing triple depending on the available type information. These works focus
on type information about entities, while we propose a method for leveraging
background knowledge about relation types which can be used jointly with the
aforementioned methods.

Dong et al. (2014); Nickel et al. (2014); Wang et al. (2015) propose combining
observable patterns in the form of rules and latent features for link prediction
tasks. However, rules are not used during the parameters learning process, but
rather after, in an ensemble fashion. Wang et al. (2015) suggest investigating how
to incorporate logical schema knowledge during the parameters learning process
as a future research direction. Rocktäschel et al. (2015) regularize relation and
entity representations by grounding first-order logic rules. However, as they state
in their paper, adding a very large number of ground constraints does not scale
to domains with a large number of entities and predicates.

In this work we focus on 2-way models rather than 3-way models (García-
Durán et al., 2014), since the former received an increasing attention during
the last years, mainly thanks to their scalability properties (Nickel et al., 2016).
According to García-Durán et al. (2014), 3-way models such as RESCAL (Nickel
et al., 2011, 2012) are more prone to overfitting, since they typically have a larger
number of parameters. It is possible to extend the proposed model to RESCAL,
whose score for a 〈s, p, o〉 triple is eTsWpeo. For instance, it is easy to show that
eTsWpeo = eToW

T
p es. However, extending the proposed method to more complex

3-way models, such as the latent factor model proposed by Jenatton et al. (2012)
or the ER-MLP model (Dong et al., 2014) can be less trivial.

7 Evaluation

We evaluate the proposed schema-based soft constraints on three datasets: Word-
Net, DBpedia and YAGO3. Each dataset is composed by a training, a valida-



Axioms

has part ≡ part of−

hypernym ≡ hyponym−

instance hypernym ≡ instance hyponym−

m. holonym ≡ s. meronym−

m. of domain region ≡ s domain region of−

m. of domain topic ≡ s. domain topic of−

m. of domain usage ≡ s. domain usage of−

der. related form ≡ der. related form−

verb group ≡ verb group−

assoc. band ≡assoc. musical artist
musical band ≡ musicalArtist

isMarriedTo ≡ isMarriedTo−

hasNeighbor ≡ hasNeighbor−

    Real Part          Imaginary Part

derivationally related form
verb group

member of domain region
synset domain region of

member meronym
member holonym

has part
part of

instance hyponym
instance hypernym

synset domain usage of
member of domain usage

member of domain topic
synset domain topic of

hyponym
hypernym

Pr
ed

ic
at

es

3.5 3.4 -3.2 3.4 3.2 0.0 0.0 -0.0 0.0 0.0

3.5 3.4 3.3 -1.8 -2.8 0.0 -0.1 0.0 0.0 0.0

-3.1 -0.3 3.2 -3.4 2.0 1.0 -2.1 2.2 1.3 -1.2

-3.1 -0.3 3.1 -3.3 1.9 -0.9 2.0 -2.1 -1.2 1.0

2.4 2.9 2.4 1.9 -2.3 -2.9 2.3 -2.5 -2.8 2.5

2.4 2.8 2.4 1.9 -2.4 2.9 -2.3 2.6 2.7 -2.4

-2.5 3.2 2.9 -1.5 3.0 2.4 0.6 2.8 -3.0 1.9

-2.4 3.2 2.7 -1.5 3.0 -2.4 -0.6 -2.6 2.9 -1.9

-1.0 -3.0 1.5 2.9 -2.4 -2.9 2.8 -2.6 1.2 2.8

-1.1 -2.8 1.6 2.7 -2.5 3.0 -2.6 2.7 -1.1 -2.8

-1.2 -0.1 -2.3 -3.3 2.6 3.1 -1.8 -2.5 0.7 1.4

-1.4 -0.1 -2.5 -3.4 2.7 -3.0 1.7 2.6 -0.6 -1.3

-3.1 -2.7 2.2 3.2 -2.5 2.8 1.7 2.9 2.9 -2.6

-3.1 -2.7 2.2 3.2 -2.4 -3.0 -1.7 -2.9 -2.8 2.6

1.0 3.1 -3.1 2.6 -2.7 -3.4 -2.8 -1.7 2.9 3.0

1.0 3.0 -3.1 2.5 -2.7 3.2 2.9 1.7 -3.0 -3.0

Fig. 1: Axioms used with WordNet, DBpedia and YAGO3 (left) and Word-
Net predicate embeddings learned by ComplEx (right). Note that if p ≡ q−

(e.g. part of and has part) then rp ≈ rq, i.e. rp and rq have similar real parts
and similar but opposite sign imaginary parts.

tion and a test set of triples, as summarized in Tab. 1. All material needed for
reproducing the experiments in this paper is available online2.

WordNet (Miller, 1995) is a lexical knowledge base for the English lan-
guage, where entities correspond to word senses, and relationships define lexical
relations between them: we use the version made available by Bordes et al.
(2013).

YAGO3 (Mahdisoltani et al., 2015) is a large knowledge graph automatically
extracted from several sources: our dataset is composed by facts stored in the
YAGO3 Core Facts component of YAGO3.

DBpedia (Auer et al., 2007) is a knowledge base created extracting struc-
tured, multilingual knowledge from Wikipedia, and made available using Seman-
tic Web and Linked Data standards. We consider a fragment extracted following
the indications from Krompass et al. (2014), by considering relations in the music
domain3.

The axioms we used in experiments are simple common-sense rules, and are
listed in Tab. 1.

Evaluation Metrics – For evaluation, for each test triple 〈s, p, o〉, we measure
the quality of the ranking of each test triple among all possible subject and object
substitutions 〈s̃, p, o〉 and 〈s, p, õ〉, with s̃, õ ∈ E . Mean Reciprocal Rank (MRR)
and Hits@k as described by Bordes et al. (2013); Nickel et al. (2016); Trouillon

2 At https://github.com/pminervini/neural-schema-regularization
3 Following Krompass et al. (2014), such relations are album, associated band, as-

sociated musical artist, genre, musical artist, musical band, and record-
Label.

https://github.com/pminervini/neural-schema-regularization


Table 2: Link prediction results (Hits@k and Mean Reciprocal Rank, filtered
setting) on WordNet, DBpedia and YAGO3.

WordNet DBpedia YAGO3
Hits@N (%) MRR Hits@N (%) MRR Hits@N (%) MRR3 5 10 3 5 10 3 5 10

TransE 79.9 87.3 91.1 0.452 44.3 52.6 59.0 0.245 32.4 40.7 50.5 0.214
TransER 86.9 91.6 93.3 0.566 47.8 54.0 60.0 0.256 33.4 42.5 52.0 0.248
DistMult 91.7 93.2 94.2 0.840 44.6 50.6 55.7 0.371 29.9 37.2 46.3 0.260
DistMultR 92.4 93.8 94.9 0.851 44.9 50.6 55.8 0.381 29.9 37.2 46.4 0.260
ComplEx 94.2 94.4 94.6 0.939 52.7 54.2 55.8 0.486 34.8 41.5 49.9 0.304
ComplExR 94.3 94.5 94.7 0.940 53.1 54.3 55.9 0.503 34.7 41.6 50.0 0.304
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Predicate Embeddings with No Axioms (λ= 0)
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Predicate Embeddings with Axioms (λ= 106)

Fig. 2: WordNet predicate embeddings learned using the TransE model, with
k = 10 and regularization weight λ = 0 (left) and λ = 106 (right) – embeddings
are represented as a heatmap, with values ranging from larger (red) to smaller
(blue). Note that, assuming the axiom p ≡ q− holds, using the proposed method
leads to predicate embeddings such that rp ≈ −rq.

et al. (2016) are widely adopted evaluation measures for evaluating knowledge
graph completion algorithms. The measures are reported in the raw and filtered
settings (Bordes et al., 2013). In the filtered setting, metrics are computed after
removing all the other positive (true) triples that appear in either training,
validation or test set from the ranking, whereas in the raw setting these are not
removed. The filtered setting is motivated by observing that ranking a positive
test triple after another true triple should not be considered a mistake (Bordes
et al., 2013).

Evaluation Setting – In our experiments we consider three knowledge graph
embedding models – TransE, ComplEx and DistMult, as described in Sect. 3.
For evaluating the effectiveness of the proposed method, we train them using
both the standard loss function J , defined in Eq. (2), and the proposed schema-
aware loss function JS , defined in Eq. (10). Models trained by using the proposed
method are denoted by the R superscript.

For each model and dataset, hyper-parameters were selected on the vali-
dation set by grid search. Specifically, we selected the embedding size k ∈
{20, 50, 100, 150}, the regularization weight λ ∈ {0, 10−4, 10−2, . . . , 106} and,



in TransE, the norm ‖ · ‖ is selected across the L1 and the L2 norm. Similarly
to Yang et al. (2015) we set the margin γ = 1 and, for each combination of
hyper-parameters, we train each model for 1000 epochs. The learning rate in
Stochastic Gradient Descent was initially set to 0.1, and then adapted during
training by AdaGrad.

Results – We report test results in terms of raw and filtered Mean Reciprocal
Rank (MRR), and filtered Hits@k in Tab. 2. For both the MRR and Hits@k
metrics, the higher the results on the test set, the better.

We can see that, in every case, the proposed method – which relies on reg-
ularizing relation embeddings by leveraging background knowledge – improves
the generalization abilities for each of the models. Results are especially evident
for TransE, which largely benefits from the novel regularizer. For instance we
can see that, in the WordNet case, the Hits@10 improves from 91.1 to 93.3,
while the Mean Reciprocal Rank improves from 0.452 to 0.566. For the remain-
ing models we can only notice marginal improvements, probably because they
already able to capture the patterns encoded by the background knowledge.

In Fig. 2 we can see a set of trained WordNet predicate embeddings (us-
ing the model TransE), where relationships predicates are described in the
axioms in Fig. 1. We can immediately see that, if p ≡ q−, i.e. p is the in-
verse of q, then rp ≈ −rq, which means that their embeddings rp and rq will
be similar but will have opposite sign. On the left we set λ = 0, i.e. we do
not enforce any soft constraint: we can see that the model is naturally in-
clined to assign opposite sign embeddings to relations such as part of and
has part, and hyponym and hypernym; however, there is still some error
margin in such an assignment, possibly due to the incompleteness of the knowl-
edge graph. On the right we set λ = 106, i.e. we enforce the relationships be-
tween predicate embeddings via soft constraints: we can see that the aforemen-
tioned error margin in modeling the relationships between predicate embed-
dings is greatly reduced, improving the generalization properties of the model
and establishing new state-of-the-art link prediction results on several datasets.

Table 3: Average number of sec-
onds required for training.

Plain Regularized
WordNet 31.7s 32.0s
DBpedia 57.9s 58.5s
YAGO3 220.7s 221.3s

A similar phenomenon in Fig. 1 (right),
where predicated embeddings have been
trained using ComplEx: we can see that the
model is naturally inclined to assign complex
conjugate embeddings to inverse relations
and, as a consequence, nearly-zero imaginary
parts to the embeddings of symmetric pred-
icates – since it is the only way of ensuring
rp ≈ rp. However, we can enforce such rela-
tionships explicitly by means of model-specific regularizers, for increasing the
predictive accuracy and generalization abilities of the models.

We also benchmarked the computational overhead introduced by the novel
regularizers by timing the training time for unregularized (plain) models and for
regularized ones – results are available in Tab. 3. We can see that the proposed



method for leveraging background schema knowledge during the learning process
adds a negligible overhead to the optimization algorithm – less than 10−1 seconds
per epoch.

8 Conclusions and Future Works

In this work we introduced a novel and scalable approach for leveraging back-
ground knowledge into neural knowledge graph embeddings. Specifically, we pro-
posed a set of background knowledge-driven regularizers on the relation embed-
dings, which effectively enforce a set of desirable algebraic relationships among
the distributed representations of relation types. We showed that the proposed
method improves the generalization abilities of all considered models, yielding
more accurate link prediction results without impacting on the scalability prop-
erties of neural link prediction models.

Future Works

A promising research direction consists in leveraging more sophisticated back-
ground knowledge – e.g. in the form of First-Order Logic rules – in neural knowl-
edge graph embedding models. This can be possible by extending the model in
this paper to regularize over subgraph pattern embeddings (such as paths), so
to leverage relationships between such patterns, rather than only between predi-
cates. Models for embedding subgraph patterns have been proposed in the liter-
ature – for instance, see (Niepert, 2016; Guu et al., 2015). For instance, it can be
possible to enforce an equivalency between the path parentOf◦parentOf and
grandParentOf, effectively incorporating a First-Order rule in the model, by
regularizing over their embeddings.

Furthermore, a future challenge is also extending the proposed method to
more complex models, such as ER-MLP (Dong et al., 2014), and investigating
how to mine rules by extracting regularities from the latent representations of
knowledge graphs.
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