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Emir Muñoz1,2(B)

1 Fujitsu Ireland Limited
2 Insight Centre for Data Analytics, National University of Ireland, Galway

emir.munoz@insight-centre.org

Abstract. RDF is structured, dynamic, and schemaless data, which en-
ables a big deal of flexibility for Linked Data to be available in an open
environment such as the Web. However, for RDF data, flexibility turns
out to be the source of many data quality and knowledge representation
issues. Tasks such as assessing data quality in RDF require a different
set of techniques and tools compared to other data models. Furthermore,
since the use of existing schema, ontology and constraint languages is
not mandatory, there is always room for misunderstanding the struc-
ture of the data. Neglecting this problem can represent a threat to the
widespread use and adoption of RDF and Linked Data. Users should be
able to learn the characteristics of RDF data in order to determine its
fitness for a given use case, for example. For that purpose, in this doc-
toral research, we propose the use of constraints to inform users about
characteristics that RDF data naturally exhibits, in cases where ontolo-
gies (or any other form of explicitly given constraints or schemata) are
not present or not expressive enough. We aim to address the problems
of defining and discovering classes of constraints to help users in data
analysis and assessment of RDF and Linked Data quality.
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1 Introduction

Background. The flexibility of RDF comes from the Web Ontology Language
(OWL): Open World Assumption (OWA), missing information treated as un-
known; and non-Unique Name Assumption (UNA), individuals may have more
than one name. These characteristics difficult data validation [28] and data qual-
ity assessment. The notion of Data Quality (DQ) is related to individual use
cases and cannot be assessed independently from the user. Yet there is a lack of
methodologies tailored to Linked Data (LD) that consider users’ requirements
and users without previous experience on the data. In this doctoral research,
we explore the use of constraints as a tool for users to identify the modeling
behind data represented using RDF. Constraints are limitations incorporated
on the data that are supposed to be satisfied all the time by instances of the
database [1]. They are useful for users to understand data as they represent
characteristics that data naturally exhibits [15]. However, a deeper study of con-
straints and the benefits that they bring to the RDF model, especially for use
cases like quality assessment, has not yet been made.
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Fig. 1: RDF data describing information about people.

Motivation. As of April 2014, an amount of 1014 Linked Datasets were reg-
istered in the Linked Open Data (LOD) cloud [19], containing billions of RDF
statements. Due to the heterogeneity of the schema(s) and modeling used in each
one of the sources, the task of determining whether a dataset is relevant for a
given use case becomes a daunting and non-trivial problem. A way to understand
data is by understanding the model behind that all facts follow. However, under
the OWA multiple possible models can be satisfied by the facts. Considering the
data as complete can allow us to adopt a Closed World Assumption (OWA) with
UNA (sacrificing flexibility), which is equivalent to a relational database [16,28],
where a single model contains all and only the facts assessed. Although advances
in the Semantic Web and Linked Data have been made in standards to commu-
nicate the semantics behind data (e.g., ontologies), they most of the time fall
short in providing expressive schemas. Therefore, there is a clear need for meth-
ods and tools to help users to comprehend the structure of RDF data in the
presence of inconsistencies and poor or absent schema.

The problem of lacking structure of RDF data can be addressed by extract-
ing constraints. In the RDF model, they can help to cope with this lack of
schema, representing some missing meta-data, such as identifiers, and cardinal-
ities. Though we sacrifice some of the greater flexibility and interoperability.

Example 1 In the following we consider the RDF data in Figure 1, which con-
tains information about people. Each entity is defined as a member of the class
schema:Person, thus they can have all properties of this class. We can describe
some characteristics of the data (in Figure 1) by means of constraints:

C1. Every person contains exactly one value for the schema:givenName and
schema:address properties.

C2. The combined properties schema:givenName and schema:address uniquely
identify each person in the data, every person has a different pair of values.

C3. Each person is connected to at least one value for the schema:telephone

property, and at most two values.



C4. The value of the property schema:knows in the person :Rosa makes direct
reference to the person :Anthony.

C5. The property schema:email is uncommon in the data and, in this dataset,
has a probability of 1

3 to appear once.
C6. All values of the property schema:telephone follow the same ‘(NUMBER)

NUMBER-NUMBER’ syntactic pattern.
C7. Entities with a schema:givenName and schema:address must be instances

of the class schema:Person.
C8. Values for property schema:gender are expected to be of type text (string).

By looking at the constraints in the example, we can see that they partially
uncover the structure and schema of the data. Formally, constraints C2 and C4
are known as integrity constraints (used to ensure accuracy and consistency of
data), whilst constraints C1 and C3 are known as cardinality constraints (used
to specify a minimum and maximum bound for relationships with properties that
an entity can have [29,15]). C5 is special in the sense it expresses the marginal
probability by which the constraint holds in the dataset [4,6]. C6 is known as
syntactic pattern constraint [17], and restrict the syntax that the values of a
property can have. Constraints C7 and C8 are known as domain and range
constraints, respectively; they restrict the types that entities (in the domain)
and values (in the range) of relations for a given property can have, respectively.

In databases, applications of constraints include: data cleaning, constraints
verify that the data conforms to a basic level of data consistency and correct-
ness, preventing the introduction of dirty data; integration, modeling, retrieval,
among others [1]. Although other classes of constraints can be defined for RDF,
in this work, we will limit ourselves to mainly study the ones described above be-
cause of: a) their potential for DQ analysis; and b) the lack of existing research
on learning such constraints from the data. Most of the actions involved in LD
quality assessment, in order to be performed, require users to have knowledge on
the underlying structure of the data. Here, we aim to provide such a notion to
the users in the absence of explicit programming, by means of identifying con-
straints in the data. In this thesis work, we refer to this problem as “learnability
of constraints”. During this research our goal is three-fold: 1) increase the ex-
pressiveness of RDF constraints to enrich the user’s understanding of the RDF
data modeling; 2) present algorithms to automatically extract such constraints;
and 3) study their effects during the assessment of quality in RDF data.

2 State of the Art

The concept of constraints has been present for long time in databases [1], and
only recently has been introduced in RDF [14]. Lausen et al. [14] presents an ap-
proach for translating constraints while converting a relational database to RDF
without losing semantic information. The authors extended the RDF vocabulary
in order to encode integrity constraints such as keys and foreign keys. Theoret-
ical aspects of integrity constraints in RDF and RDFS were studied in [2,7],
introducing a mechanism to express functional constraints in terms of equality.



While constraints like keys are indispensable for data consistency in relational
databases, in the RDF model they are still not considered first-class citizens.

OWL 21 is the most straightforward way to represent some of the constraint
here introduced. Key constraints can be defined using the axiom owl:hasKey

based upon object and data properties. Cardinality constraints can also be
expressed in OWL 2 by means of three expressions: owl:minCardinality,
owl:maxCardinality, and owl:exactCardinality. However, the semantics of
OWL 2 considers OWA and does not make the UNA, making it hard to eval-
uate consistency when same or different individual relations are not explicitly
stated (very common in lightweight ontologies). Tao et al. [28] also shows that
the expressiveness allowed by OWL 2 is limited to express Integrity Constraints.

Due to the huge effort involved in generating full ontologies, several works
aim to (semi)automatically learn or enrich ontologies from text or instance data.
Property domain/range constraints have been studied in [30], and used to ac-
quire class disjointness axioms to detect inconsistencies in DBpedia. Völker et
al. [31] uses two approaches for the same problem: extensional (relying solely on
instances) and intensional (based on logical and lexical description of classes).
Key constraints have been explored by [27,23] for link discovery and data inte-
gration purposes. And our previous work [17] introduces the concept of syntactic
constraints in RDF. (For a recent survey on methods in this line see [18].)

Languages for expressing constraints in RDF data intended to validate RDF
documents, and communicate expected patterns exists. Among the most pop-
ulars is Shape Expressions (ShEx)2, which is more focused on type inference
than on verification, unlike the RDF Data Descriptions (RDD) [20]. RDD uses
a compact special-purpose syntax which is independent of a specific inference
machinery. Shapes Constraint Language (SHACL)3 is the recent output of the
W3C RDF Data Shapes Working Group, which provides a high-level vocabu-
lary to identify predicates and their associated cardinalities, datatypes and other
constraints (by using SPARQL). SPARQL Infering Notation (SPIN)4 is a low-
level language that allows users to use SPARQL to specify rules and logical
constraints. All of them, namely, ShEx, RDD, SHACL, and SPIN, are aimed
to validate RDF data, and communicate data semantics among users. They do
cover constraints such as keys and cardinality; however, their expressivity is lim-
ited compared to our proposal and they do not consider a probabilistic notion.

Multiple applications of constraints can be envisioned in RDF based on their
success in the relational model, including: data cleaning, integration, modeling,
processing, and retrieval [21]. In terms of quality assurance, keys were recently
used in [24] to determine discriminability of resources, i.e., determine if datasets
contain indistinguishable resources w.r.t. a given set of properties. Likewise, we
plan the application of constraints as a tool that serves users to understand the
structure of the data and help them to assess RDF data quality.

1 https://www.w3.org/TR/owl2-syntax/
2 https://www.w3.org/2013/ShEx/Primer
3 https://www.w3.org/TR/shacl/
4 http://spinrdf.org/
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The discovery task of constraints from RDF data is a new topic and has been
focused solely on keys and under a particular and limited view of RDF, which
is known as Concise Bounded Description (CBD)5. CBD limits the (over)use of
blank nodes (e.g., the ones generated in the schema:address property shown
in Example 1), the path length, total number of statements, and reifications. It
also adds an unexpected complexity to the discovery problem.

3 Problem Statement and Contributions

The benefits that the definition of expressive classes of constraints for RDF data
brings to the table are manifold, e.g., data cleaning, integration, modeling, pro-
cessing, and retrieval, akin to constraints in relational databases. However, they
have not been studied in depth by the Linked Data community. Although vari-
ous of the existing technologies can be used to define new classes of constraints,
there is no practical or theoretical framework that connects them yet. In this
PhD research, we study solutions to implement constraints in RDF using cur-
rent theoretical foundations. We also aim to show how users can benefit from
the presence of constraints while assessing quality of RDF datasets.

Unlike previous works on key constraints and linked data quality, we ac-
knowledge the volume, variety, veracity, and velocity of data. Therefore, we rely
on the following assumptions: (i) we do not assume the existence of a full/com-
plete/rich schema or ontology; (ii) RDF data is not always formatted in a specific
way (e.g., CBD), this is more unlikely if we consider the Web of Data; (iii) RDF
data contain plenty of RDF Blank Nodes [13,12], which radically change the
current view of constraints solely based on sets of properties to a view of sets of
property paths; and (iv) we assume that RDF data are error prone, and incom-
plete, which requires that these techniques work under uncertainty. The problem
and assumptions stated above lead to the following research questions:

RQ1 Can we define more expressive and novel constraints for RDF data?
We observed that RDF key constraints are defined as a set of single proper-
ties and under the assumption of CBD [25]. We thus see three drawbacks of
this approach: (a) CBD is application dependent and complex to compute,
and (b) it does not consider complex values (e.g., schema:address in Exam-
ple 1), (c) it does not take into account that RDF data on the Web of Data
contains plenty of blank nodes [13,12]. For example, considering Example 1
and the state-of-the-art, we have that constraint C5 cannot be expressed
with current approaches; and, constraint C2 cannot be expressed under the
CBD assumption, and under the assumption that two blank nodes are always
considered to be equal. Neverthless, a relaxed vesion of C2 including only the
schema:givenName property can be expressed with current approaches. Here,
we aim to increase the coverage and expressivity of RDF constraints with
the so-called SPARQL Property Paths [22] and a value similarity definition
that can help to cope with complex values.

5 https://www.w3.org/Submission/CBD/

https://www.w3.org/Submission/CBD/


RQ2 Can constraints be automatically extracted under a non-CBD assumption?
So far the task of defining constraints for RDF data has been relegated
to users mainly with the help of high/low-level languages. ROCKER [23]
was the first machine-learning-based approach for key discovery. We expect
to determine whether the methods behind ROCKER can be extended to
identify more expressive keys and our new classes of constraints. Regardless
of the solution, we aim to account the existence of blank nodes, and to
consider scalability as a key feature of our framework.

RQ3 What is the impact of constraints in the assessment of RDF data quality?
Constraints in RDF have been used for data validation mainly. Specific ap-
plications of RDF keys have been investigated in data linkage by [5,27,23].
But the semantics of constraints can have several implications in data quality
assessment that have not been investigated yet. In [24] the authors present
an approach to discover redundant entities in RDF data using a key discov-
ery algorithm. However, we want to investigate further how to exploit the
rich semantics of constraints in RDF, especially considering different DQ
scenarios and dimensions.

4 Research Methodology and Approach

The expressivity of current RDF constraints definitions is limited, and do not
deal with complex data values. Currently, the definition of constraints is based
only on sets of properties and does not consider the graph structure of RDF
data. This is partially due to certain intractabilities when working with complex
data values. For instance, to determine whether two blank nodes are equal (e.g.,
:bnode1 and :bnode3 in Example 1), it is needed to determine if there exists
an isomorphism between the RDF graphs — which results to be an NP (GI-
complete) problem [12]. In order to cope with these limitations, our proposal
unfolds in the following subsections.

4.1 Definition of constraints for RDF

The semantics of constraints in Example 1 is similar across different vocabularies,
and similar to their pairs in relational databases. However, current vocabular-
ies/ontologies do not consider complex data values or blank nodes in the con-
straints definition. In order to cope with this lack of expressivity, our approach
includes the definition of constraints using existing standards like SPARQL prop-
erty paths [22]. In turn, an RDF key could be defined as a set of property
paths, instead of single properties. For example, we could express that the path
schema:address/schema:streetAddress is used as a key. This will also require
us to deal with blank nodes and their equivalence. For this we plan to use the
skolemization algorithm proposed by Hogan [12].

RDF data may also contain uncertain data, which usually lead to inconsisten-
cies in later processing. In these cases, a strict consideration of constraints would
lead to data loss. Allowing some exceptions can prevent applications from losing
data [11]. For that we believe that it is missing a definition of RDF constraints
with an associated probability of occurrence. Constraint C5 in Example 1 is an
example of this case.



4.2 Discovery of constraints

Together with the definition of more expressive classes of constraints, we will
propose algorithms to discover them from RDF data. Existing approaches only
discover key constraints from RDF data in a CBD form, and domain/range
constraints. Here, we can follow two non-exclusive possible paths: (i) determine
whether existing approaches, such as ROCKER or SAKey, can be extended
to identify more expressive keys, and if they are suitable for other classes of
constraints (e.g., cardinality, probabilistic, syntactic); (ii) analyse the translation
of approaches used to extract constraints in other data models, for example, the
XML model [10,3]. (XML is meant for data serialization as a tree where order
is important, RDF is a knowledge graph and order is not important.)

4.3 Constraints and data quality

We argue that constraints will allow users to efficiently understand the structure
and nature of the data. This empowers users to perform different analytic tasks,
being DQ one of them. Constraints could be related with several of the DQ
dimensions defined in [32,26], such as, relevancy (data helps to know what you
want), completeness (data do not leave any open questions), amount of data,
interpretability, concise representation, consistent representation, to name just
a few. These dimensions are categorized as contextual or representational DQ
characteristics of high-quality data [26]. Constraints as the ones listed in Ex-
ample 1 could be defined and extracted from RDF data to help users in the
identification and analysis of those dimensions. A more practical study on how
users can benefit from these constraints should be done to derive relations be-
tween constraints and DQ dimensions.

5 Preliminary Results

Our first step into the path of learning the structure of RDF data was at prop-
erty values level. In [17] we provide an unsupervised approach to extract syn-
tactic patterns from property values used in RDF data. These patterns attempt
to address the lack of rdfs:range definitions. A set of patterns extracted for
a given property enables: (i) human-understanding of syntactic patterns that
each property follows, (ii) a structural description of properties, (iii) the de-
tection of data inconsistencies, and (iv) the validation and suggestion of new
values for a property. In the learning process, first, a lexical analysis is applied
over values of properties to generate a sequence of tokens. From these tokens,
lexico-syntactic rules are extracted to generate content patterns. For instance, a
pattern for the values of property schema:telephone in Example 1 could be as
‘(NUMBER) NUMBER-NUMBER’. We experimented using DBpedia v3.9 to extract
content patterns for all properties in the ontology. The extraction generated a
database with ca. 500,000 content patterns.

The extraction of content patterns could be used to enrich the definition
of rdfs:range properties. Interestingly, a content pattern goes beyond the cur-
rent definition of a RangeTypeConstraint in RDD, which is limited to indi-
cate that a property points either a URI, BlankNode, Resource, or a Literal.



6 Evaluation Plan

In order to evaluate the outputs of this PhD research, we plan the following
segmented evaluation, for the three main parts of this work.

6.1 Definition of constraints for RDF

A definition for the types of constraints we propose here can be evaluated in
terms of the expressivity and applicability. The expressivity of our definition of
RDF keys can be compared against OWL 2, ShEx, SHACL, RDD, and [23].
While for the rest of our definitions, to the best of our knowledge, there is no
work to compare with. Conversely, we plan to use related works performed in
XML [9,8] and relational databases [6] to define semantically similar constraints
and applications.

6.2 Discovery of constraints

The quality of the discovery part can be evaluated against evaluation datasets,
measuring the number of retrieved constraints, the time and memory complexity,
precision, recall, correctness, and completeness. In the state-of-the-art, we could
find only the datasets used in [23], which can be used to partially evaluate our
extracted RDF keys. Since there is no other work that considers SPARQL prop-
erty paths nor probabilistic constraints, there is a lack of manually-annotated
gold standards that we can use. We will generate new evaluation datasets to
show the effectiveness of our approach, considering different data sources such
as Web Data Commons6. In order to measure scalability, these datasets must be
of different sizes (from thousands up to millions).

6.3 Constraints and data quality

The evaluation of this interaction between constraints and data quality will be
measured in two ways. First, we can express our constraints in ShEx or RDD, and
apply existing tools to validate a dataset against a set of constraints. Second,
we plan to perform a user study to determine how useful are the extracted
constraints for several scenarios and tasks of quality assessment.

7 Conclusions and Future Work

From the beginning, the definition of constraints in RDF has been limited by
their mapping from relational databases. Current constraints are based on single
property names to, for example, uniquely identify entities in a dataset. Thereby,
current approaches do not consider the existence of complex property values.
Therefore there is a lack of expressiveness and applications for RDF constraints.

In this paper, we present a doctoral research proposal that identifies research
questions in the area of constraints for RDF and data quality. This research
proposes the definition of more expressive classes of RDF constraints, and the
development of methodologies where constraints can help users to understand

6 http://webdatacommons.org/
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the structure behind RDF data. We believe this kind of tools will help users
in the assessment of quality. Also it will unlock further applications in data
cleaning, integration, modeling, processing, and retrieval, akin to constraints in
relational databases.
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constraints on XML data. In Proc. of the 14th WISE, 13-15 October 2013.

10. G. Grahne and J. Zhu. Discovering approximate keys in XML data. In Proc. of
the 2002 ACM CIKM, pages 453–460, 2002.

11. S. Hartmann. Soft constraints and heuristic constraint correction in entity-
relationship modelling. In Semantics in Databases, 2nd International Workshop,
pages 82–99, 2001.

12. A. Hogan. Skolemising blank nodes while preserving isomorphism. In Proc. of the
24th WWW, pages 430–440, 2015.

13. A. Hogan, M. Arenas, A. Mallea, and A. Polleres. Everything you always wanted
to know about blank nodes. Web Semantics: Science, Services and Agents on the
World Wide Web, 2728:42 – 69, 2014. Semantic Web Challenge 2013.



14. G. Lausen, M. Meier, and M. Schmidt. SPARQLing constraints for RDF. In Proc.
of the 11th EDBT, pages 499–509, 2008.

15. S. W. Liddle, D. W. Embley, and S. N. Woodfield. Cardinality constraints in
semantic data models. Data & Knowledge Engineering, 11(3):235–270, Dec. 1993.

16. B. Motik, I. Horrocks, and U. Sattler. Bridging the gap between OWL and re-
lational databases. Web Semantics: Science, Services and Agents on the World
Wide Web, 7(2):74 – 89, 2009.
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30. G. Töpper, M. Knuth, and H. Sack. DBpedia ontology enrichment for inconsistency
detection. In Proceedings of the 8th International Conference on Semantic Systems,
I-SEMANTICS ’12, pages 33–40, New York, NY, USA, 2012. ACM.

31. J. Völker, D. Fleischhacker, and H. Stuckenschmidt. Automatic acquisition of
class disjointness. Web Semantics: Science, Services and Agents on the World
Wide Web, 35, Part 2:124 – 139, 2015. Machine Learning and Data Mining for the
Semantic Web (MLDMSW).

32. R. Y. Wang and D. M. Strong. Beyond accuracy: What data quality means to
data consumers. J. Manage. Inf. Syst., 12(4):5–33, Mar. 1996.

http://www.w3.org/TR/sparql11-property-paths/
http://www.w3.org/TR/sparql11-property-paths/
http://www.w3.org/Submission/CBD/
http://www.w3.org/Submission/CBD/

	On Learnability of Constraints from RDF Data

