
Identifying Equivalent Relation Paths in
Knowledge Graphs

Sameh K. Mohamed1, Emir Muñoz1,2, Vı́t Nováček1, and Pierre-Yves
Vandenbussche2 ? †

1 Insight Centre for Data Analytics at NUI Galway, Ireland
2 Fujitsu Ireland Limited

Abstract. Relation paths are sequences of relations with inverse that
allow for complete exploration of knowledge graphs in a two-way un-
constrained manner. They are powerful enough to encode complex re-
lationships between entities and are crucial in several contexts, such as
knowledge base verification, rule mining, and link prediction. However,
fundamental forms of reasoning such as containment and equivalence of
relation paths have hitherto been ignored. Intuitively, two relation paths
are equivalent if they share the same extension, i.e., set of source and
target entity pairs. In this paper, we study the problem of containment
as a means to find equivalent relation paths and show that it is very
expensive in practice to enumerate paths between entities. We charac-
terize the complexity of containment and equivalence of relation paths
and propose a domain-independent and unsupervised method to obtain
approximate equivalences ranked by a tri-criteria ranking function. We
evaluate our algorithm using test cases over real-world data and show
that we are able to find semantically meaningful equivalences efficiently.

1 Introduction

Knowledge graphs (KGs) are graph-structured knowledge bases (KBs), consist-
ing of facts encoded in the form of (subject, relation, object) triples, indicating
that subject and object entities hold the relationship relation, e.g., (Bob, has-
Partner, Alice). Popular KGs such as NELL, DBpedia, Freebase, or YAGO, have
been developed in both academia and industry environments, attracting lot of
attention due to their usefulness for many applications such as search, analytics,
recommendations, and data integration. Relation paths with inverse are con-
venient means for complete exploration of KGs as they allow for unconstrained
navigation that will not get stuck in sink nodes with no outgoing edges. However,
there has been little study of their reasoning in comparison to single relations.
In this paper we study two fundamental forms of reasoning on relation paths,

? The first two authors contributed equally to this work.
† This work has been supported by the TOMOE project funded by Fujitsu Labo-

ratories Ltd., Japan and Insight Centre for Data Analytics at National Univer-
sity of Ireland Galway, Ireland (supported by the Science Foundation Ireland grant
12/RC/2289).

Bob

Edd

Alice
Bunscoil

StartUp X
Mervue

Galway

Ireland

hasPartner

hasChild

livesIn

hasChild

studyIn

worksFor

livesIn

locatedIn

locatedIn

cityOf

isPartOf

nationality

Fig. 1: Example knowledge graph of a family living in Ireland.

namely, containment and equivalence, and show how they can be used in the
analysis of selected popular KGs. Intuitively, two relation paths P and Q are
equivalent if they share the same extension, i.e., set of pairs (u, v), where nodes
u and v are connected by P and Q. Recently, [23,20] have addressed the prob-
lem of determining whether two relations are equivalent or synonymous, using
inductive approaches based on similarity and frequent itemsets, respectively. We
generalize this task and compute equivalence between relation paths instead of
single relations, which is a computationally more challenging problem. Relation
paths in KGs have been mainly used in inference systems [11,12], and the link
prediction task [15,14]. For instance, a relation path is able to encode complex

relationships between entities, e.g., Bob hasChild−−−−−→Edd hasChild−1

−−−−−−→Alice in Fig. 1, can
guide the inference that Bob is partner of Alice because they have a child in com-
mon, even if there was no direct relation between them. Also, Bob livesIn−−−→Galway
does not exists in Fig. 1, indicating possible missing information, which can be
inferred by knowing that Bob works for a company located in Mervue which is
part of Galway city, and he has a child living and studying in that city.

Reasoning on relation paths can be a computational challenge, especially
when dealing with large KGs and considering inverse relations as well, and has
hitherto been ignored. Given a fixed relation path, finding paths equivalent to it
requires testing equivalence with all possible paths in the KG. Enumerating all
simple paths between two entities is generally intractable, as their number can
be in O(n!) for complete graphs (with n nodes) and tends to be quite large even
for relatively sparse undirected graphs. We argue that despite of the challenges,
a proper analysis of their reasoning is needed to unlock further applications in
tasks such as knowledge graph completion, rule mining, and link prediction.

We propose to reduce the problem of finding equivalences to path contain-
ment. We map the problem to the well-studied regular path queries with inverse
(2RPQs) in graph databases (see [3,4,2], among others). In graph databases,
the notion of equivalence is defined in terms of containment, more specifically,
query containment, which consists of determining whether the evaluation of a
query Q1 is a subset of the evaluation of a query Q2. Checking containment
of queries in databases is crucial in several contexts, such as query optimiza-
tion, query reformulation, knowledge base verification, information integration,
integrity checking, and cooperative answering [1]. Whether a relation paths and
its reasoning in KGs can play a similar crucial role, and bring similar benefits is
an open question. We hope that this work shed light on this topic.

More formally, the problem of interest in this paper is as follows:

Search of equivalent relation paths problem

Given: a knowledge graph G, relation path query Q, integer k, depth d
Find: top-k equivalent relation paths of max. length 2d for Q in G according
to a ranking function RankQ(P), for all P ∈ C set of candidates.

In this paper, we formulate an approximate solution to this problem, and
illustrate it using four real-world knowledge graphs under different test cases
from different domains of knowledge.

Example 1. Let us consider the KG in Fig. 1 with eight entities and nine different
relationships. A query Q = 〈livesIn,cityOf−1〉 asks for equivalent relation paths
to “a person living in a country which has a city”. Valid answers will contain:
(a) 〈nationality,cityOf−1〉, (b) 〈hasChild,studyIn,locatedIn〉, (c) 〈hasChild,livesIn〉,
(d) 〈hasPartner−1,hasChild,livesIn〉. Interestingly, these results can be translated
into insights about the person: (a) she has the nationality of the country where
city is, (b) she has a child who study in a school located in city, (c) she has a
child who lives in city, and (d) she has a partner whose child lives in city.

Organization. The rest of the paper is organized as follows. Section 2 presents
background definitions for knowledge graphs, subgraphs, and connecting paths.
In Section 3 we study the properties of containment and equivalence of relation
paths. Section 4 presents our algorithm for efficient search for equivalent relation
paths in a knowledge graph. Experimental results of our approach over four real-
world knowledge graphs are presented in Section 5. We discuss related work in
Section 6. Conclusions and future work are summarised in Section 7.

2 Preliminaries

In the following, we give definitions and examples supporting the two key notions
of our approach – knowledge graph and query relation path.

Knowledge Graphs. We define a knowledge graph G = (V,E,ΣV , ΣE , `) as an
edge-labeled directed multigraph, where V is the set of nodes, E ⊆ V ×ΣE ×V
is the set of directed, labeled edges between two nodes, ΣV ⊆ Σ∗ is a finite set
denoted as the node vocabulary, ΣE ⊆ Σ∗ is a finite set denoted as the edge
vocabulary, and ` is a labeling function that assigns a label in ΣV to a node in
V , and a label in ΣE to an edge in E. Each node v ∈ V represents an entity, and
each edge e = (v, a, v′) ∈ E represents a a-labeled relationship between entities v
and v′ (endpoints), where v is the domain of e, and v′ is the range of e, denoted
Dom(e) and Ran(e), respectively. Here, for simplicity, we omit the node and
edge vocabularies, and use G = (V,E, `) to refer to a knowledge graph.

Example 2. Fig. 1 shows a fragment of a knowledge graph. Each entity (e.g.,
Edd) has a label name, and connects to other entities (e.g., Galway) via labeled
relationships (e.g., livesIn).

Paths. A path P in graph G is a sequence of edges 〈e1, e2, . . . , ek〉, where for
1 ≤ i ≤ k, ei = (vi−1, ai, vi) is an edge in G with label ai and endpoints vi−1
and vi. The integer k is called the length of P , denoted by |P |. We use P (u v)
to denote a variable-length path with first node u and last node v, where u and
v are known as the endpoints. We define the functions domain and range of
a path P , Dom(P) = Dom(e1) and Ran(P) = Ran(ek). We define the binary
associative operator ⊕ that concatenates two paths, P1⊕P2, by adding the edges
in P2 to the back of P1 iff Ran(P1) = Dom(P2). A path label `(P) is defined
as `(v0)`(e1) . . . `(vk−1)`(ek)`(vk), i.e., the concatenation of all node and edge
labels on the path P . For instance, in our running example, we can have the
paths P1 = 〈Edd,livesIn,Galway〉, and P2 = 〈Ireland,cityOf−1,Galway〉. Notice
that G is a directed graph, and we would like to walk through the graph in a two-
way unconstrained manner, meaning that an edge can be walked in its opposite
direction. This is to avoid the problem of getting stuck in sink nodes with no
outgoing edges. This allows for complete exploration of the graph structure. To
preserve the semantics of the original directed relations, we consider auxiliary
inverse relations in the traversal, which is considered as a different relation, and
equivalent to following a directed edge in its opposite direction. We use the ‘-1’
superscript to denote the inverse relations.

Relation Paths. We introduce the use of the wildcard symbol ‘ ’ in paths to
replace any node in the path. The use of a wildcard or “don’t care” character in
a path means that the position where the wildcard is used can take any value,
i.e., any node label in ΣV can be put in that place. For instance, we can have
P ′1 = 〈 ,livesIn,Galway〉, which can serve to match all people (nodes) that live in
Galway. We call a path relation path when all its nodes are replaced by wildcards,
and wildcard symbols are omitted from the path.

Subgraph. Let Graphd(G, v) be the subgraph function that extracts G′ =
(V ′, E′, `′) around a node v ∈ V from G up to depth d. The set of nodes V ′ ⊆ V
in G′ contains all nodes that are reachable in G from v following paths of length
≤ d. Similarly, the set of edges E′ ⊆ E, where if (v1, a, v2) ∈ E′ then v1, v2 ∈ V ′.
Note that when d = 0, Graphd(G, v) extracts only the node v with no edges.

Intuitively, a subgraph allows us to generate a neighborhood for node v,
which contains all reachable nodes from v following paths of a variable length.

Connecting Paths. If we relax the definition of path in such a way that the
edges still carry a label, but the non-endpoint nodes do not (i.e., they are re-
placed by wildcards), then the path degenerates into a so-called connecting path
anchored by its starting and ending nodes (endpoints). Formally, a node u is
said to be connected to a node v in G via P if there is a P (u v) path.

Example 3. Considering the KG in Fig. 1, one can extract Graph1(G, Alice) and
Graph1(G, Galway), which are the subgraphs of depth 1 around nodes Alice and
Galway, respectively. Considering the overlapping nodes, i.e., Edd, and Ireland,
we can identify the following connecting paths:

(a) 〈Alice,hasChild,livesIn,Galway〉
(b) 〈Alice,livesIn,cityOf−1,Galway〉

(c) 〈Alice,nationality,cityOf−1,Galway〉
(d) 〈Alice,hasChild,studyIn,locatedIn,Galway〉.

Moreover, by replacing the endpoint nodes in connecting path (a) by wild-
cards, we get a relation path Pk = 〈hasChild,livesIn〉 of length 2.

3 Equivalence of Relation Paths

With the definitions of knowledge graph and relation paths, in this section, we
present our study on the reasoning of relation paths.

Every relation path has an associated path extension in G, that consists of
pairs of entities: from node u we can reach node v following a relation path P if
the pair (u, v) is a member of the relation path extension PEXTG(P). Therefore,
the size of a relation path extension, correspond to the number of valid connect-
ing paths we can generate for any pair of nodes in the graph. Formally, given
G = (V,E, `) we define the relation path extension of a relation path P as:

PEXTG(P) = {(u, v) | u, v ∈ V ∧ IG(P (u v))}, (1)

where IG(P (u v)) is an indicator function that takes value True if there is a
P (u v) path in G, and False otherwise. Syntactically, relation paths can be
seen as 2-way regular path queries (2RPQs) [3], the default core navigational
language for graph databases, where inverse relations are allowed. Then, the
problem of deciding whether a pair of nodes is connected via a relation path
P over a knowledge graph G (i.e., P (u v)?) can be translated into computing
the answer of 2RPQs, which is in low polynomial time [17,2]. The problem
of determining whether a path P with inverse relations exists between nodes
u, v ∈ V can be easily reduced to the evaluation of regular path queries (RPQs)
by extending the underlying KG with inverse edges (cf. [2]). Next, we define the
notion of symmetric closure of a knowledge graph G, denoted by G±. Let G± be
the knowledge graph obtained from G = (V,E, `) by adding the edge (u, a−1, v),
for each (v, a, u) ∈ E.

Proposition 1. For every relation path P and knowledge graph G the problem
of deciding whether a pair (u, v) of nodes belongs to PEXTG(P) can be solved in
time O(|E| · |P |).

Proposition 2. (See e.g., [6]). Let P be a relation path. There is a NLogspace
procedure that computes PEXTG(P) for each knowledge graph G.

Proof (Sketch). Given a knowledge graph G and its symmetric closure G±. For
each pair (u, v) of nodes in V , we check whether it belongs to PEXTG(P) over
G as a simple evaluation of a regular path query over G± [17]. Clearly, G±
can be constructed in Logspace from G1. Non-emptiness of P (u v) in G±
can be checked in NLogspace in |E| using a standard “on-the-fly” algorithm.
We conclude that the whole process can be computed in NLogspace for each
relation path P .

1 Given a two-way automaton with n states, we can construct a one-way automaton
with O(2nlog n) states accepting the same language [22].

With the relation path extension definition in place, two interesting and basic
analysis tasks that arise are the containment and equivalence problem, defined
in databases query languages (see, e.g.,[5] for details of a relational database
context, and [3,21,10] for a graph database context). In a query scenario, if
a relation path (i.e., 2RPQ) is equivalent to other with better computational
properties (e.g., shorter, faster evaluation), then the initial relation path can be
replaced for optimization purposes. In other words, we can search for a simpler
relation path that is contained in the original one. Indeed, the containment and
equivalence problems have been always very related and played a prominent
role in the analysis of query languages in databases. In the following, we build
upon these ideas, and use the containment problem as a building block for the
equivalence of relation paths.

Definition 1 (Path Extension Containment). Let P1 and P2 be two relation
paths, and G a knowledge graph. We say that P1 is contained in P2, denoted
P1 v P2, if PEXTG(P1) ⊆ PEXTG(P2).

Theorem 1 ([4] Theorem 5). The path extension containment problem is
PSPACE-complete.

We can reduce the path extension containment problem to the well-studied
2RPQ containment. A proof of Theorem 1 considering 2RPQs is given in Cal-
vanese et al. [4], where is shown that for 2RPQs the problem of containment
has a PSPACE-complete upper bound. The proof uses two-way automata tech-
niques, where the containment problem is reduced to determine whether there
is a path from start state to final state in a two-way automata.

Definition 2 (Path Extension Equivalence). Let P1 and P2 be two relation
paths. We say that P1 and P2 are extension equivalent (or PEXT-equivalent),
denoted by P1 ≡ P2, iff P1 v P2 and P2 v P1. While when only P1 v P2

(resp. P2 v P1) is true, we say that P1 and P2 are approximate equivalent (or
∆-equivalent), denoted as P1 �∆ P2 (resp. P2 �∆ P1).

It is easy to see, that path extension equivalences are in PSPACE-complete
complexity given Theorem 1 and Definition 2.

Corollary 1. The PEXT-equivalence problem is PSPACE-complete.

Example 4. Using the KG in Figure 1, the following are two PEXT-equivalences:
(a) 〈livesIn〉 ≡ 〈studyIn,locatedIn〉, and (b) 〈hasPartner〉 ≡ 〈hasChild,hasChild−1〉,
which could be interpreted as: (a) people who lives in city also study in
school located in city, and (b) people that has partner also has a child who
is children of partner. Whilst one can consider 〈hasChild,livesIn,isPartOf−1〉 �∆
〈worksFor,locatedIn〉 to be a ∆-equivalence, because the PEXT of the r.h.s. path
is a superset of the l.h.s. one. In other words, not everybody works for a company
located in the same neighborhood where their children live.

Theorem 2. PEXT-equivalence is an equivalence relation.

Proof. We need to show that PEXT-equivalence is reflexive, symmetric, and
transitive. This follows from the v relation (path extension containment) defi-
nition. Two paths P1, P2 are PEXT-equivalent iff P1 v P2 ∧ P2 v P1 where v
is defined using a standard set inclusion operation ⊆ on the path extensions.
(Reflexivity) P ≡ P for all P , because PEXT(P) ⊆ PEXT(P). (Symmetry) If
P1 ≡ P2, then PEXT(P1) ⊆ PEXT(P2) ∧ PEXT(P2) ⊆ PEXT(P1), therefore also
P2 ≡ P1 for all P1, P2. (Transitivity) If P1 ≡ P2 and P2 ≡ P3 then PEXT(P1) ⊆
PEXT(P2) ∧ PEXT(P2) ⊆ PEXT(P1) ∧ PEXT(P2) ⊆ PEXT(P3) ∧ PEXT(P3) ⊆
PEXT(P2), which means that PEXT(P1) = PEXT(P2) = PEXT(P3), i.e.,
PEXT(P1) ⊆ PEXT(P3) ∧ PEXT(P3) ⊆ PEXT(P1), and therefore also P1 ≡ P3

for all P1, P2, and P3. ut

Theorem 3. ∆-equivalence is a partial order.

Proof. This comes as straightforward from Definition 2 – the ⊆ relation used in
the definition is a partial order (on path extensions) and therefore v is also a
partial order (on relation paths).

4 Search of ∆-Equivalences

In the following, we mainly focus on the extraction of ∆-equivalences for two rea-
sons: (a) extracting ∆-equivalences from large-scale KGs is cheaper than PEXT-
equivalences, and (b) we argue that because of the incompleteness of knowledge
graphs2, PEXT-equivalences are harder to find in real-world KGs, than instances
of its more relaxed version (∆-equivalence), which we believe are more abundant.
Point (a) is justified by our theoretical discussion in Section 3, while point (b)
will be later justified for our experimental results in Section 5.

Algorithm 1 (SearchEquiv: Search of ∆-Equivalent Paths)

Input: Knowledge graph G, query relation path Q, depth d
Output: Ranked list of ∆-equivalent paths of Q
1: E ← PEXTG(Q)
2: C ← set()
3: for (v1, v2) ∈ E do
4: C ← C ∪ ConnectingPaths(v1, v2, d,G)

5: return RankFunc(C)

We present Algorithm 1 as an implementation of our method for finding
∆-equivalences of a query path relying on connecting paths between pairs of
entities in PEXTG(Q). All steps of our method are shown in Figure 2, along the
data structures that each step takes as input an returns as output.

2 Dong et al. (2014) [7] report that 71% of the people described in Freebase have
unknown place of birth, 75% have unknown nationality, and the coverage for less
used relations can be even lower.

Fig. 2: Flow diagram of the process of retrieving ∆-equivalent paths for Q.

Next, we describe in details the four steps of our method:

(1) Extracting the extension of query path Q. This step corresponds to
line 1 in Algorithm 1. In this step we extract the pairs of nodes in PEXTG(Q).
Despite being a NLogspace procedure, in practice this computation is very ex-
pensive for large-scale KGs, therefore, here we take a divide-and-conquer strategy
to obtain this set. Let Q = 〈e1,e2,. . .,ek〉 be the query relation path. First, we
find the m-th relation with m = bk/2c, and divide Q into two relation paths,
Q1 = 〈e1,e2,. . .,em〉 and Q2 = 〈em+1,em+2,. . .,ek〉. Second, we compute the set
Q = {u | Ran(em) = u ∧ Dom(em+1) = u} of witness nodes, which are nodes
that are range of Q1 and domain of Q2. For each node u ∈ Q, we walk back-
wards through Q1 and forwards through Q2 in G, saving all final endpoint nodes
on both sides, i.e., all nodes which are Dom(e1) and Ran(ek). Considering that
we followed Q1 and Q2 from the witness nodes, we know that the destination
nodes which are Dom(e1) and/or Ran(ek) are indeed connected by Q. Thus, the
PEXTG(Q) is obtained from generating pairs between the found endpoints.

It is worth to mention, that some nodes in G can be densely connected, and
paths passing through them are prone to outnumber the true facts in G, because
they usually contain many-to-many relations. For example, the relation path
〈hasGender,hasGender−1〉 in most knowledge graphs will have more instances
than the total count of fact triples, as it represents all possible combinations of
instances of people with same gender in the graph. Because of that, we consider
here a random sample of 1000 path instances, thus PEXTG(Q) is a sample rather
than the full set. This constraint can be seen as a limitation of our method; how-
ever, it is a parameter that users can set accordingly, at a cost in the throughput.
Further study and optimization of this part are left for future work.

(2) Subgraphs extraction. This step correspond to line 2 in Algorithm 2,
where the subgraph generation routine is called twice. For each pair of nodes
(u, v) in PEXTG(Q), we generate Graphd(G, u) and Graphd(G, v). A subgraph of
depth d is generated using a mix between Depth-first search (DFS) and Breath-
first search (BFS) from a node. It is easy to see that the subgraph generation step
also suffers of scalability issues on large-scale KGs, where a simple DFS or BFS
search can become very expensive, and return non-representative subgraphs if
taken separately. Applying only DFS would lead to very deep subgraphs which
might not consider all neighbor relations; and applying only BFS would lead
to very wide subgraphs with not enough depth. To cope with this, we apply a

Algorithm 2 (ConnectingPaths: Connecting Paths Extraction)

Input: v1, v2 nodes, depth d, knowledge graph G
Output: C list of connecting paths between v1 and v2
1: G1,G2 ← Graphd(G, v1), Graphd(G, v2)
2: T1, T2 ← {v | u, v ∈ VG1 ∧ IG1(P (u v))}, {w | y, w ∈ VG2 ∧ IG2(P (y w))}
3: for t ∈ T1 ∩ T2 do
4: for P1 ∈ {P | u ∈ VG1 ∧ IG1(P (u t))} do
5: for P2 ∈ {P | v ∈ VG2 ∧ IG2(P (v t))} do
6: C.append(P1 ⊕ Inverse(P2))

7: return C

v1

v1

v2

v2

same node

same node

Q

Fig. 3: Generation of connecting paths from the path extension of query Q.

DFS with BFS flavor by considering the following two restrictions: (1) from a
given node, we extract a maximum of 50 instances of a same relation, to avoid
neglecting under represented relations in nodes with highly common relations;
and (2) in each iteration of DFS, we take a sample of 200 edges, to keep a
manageable final size for a subgraph. Again, such decisions are implementation
parameters that can be tuned by users. In this way, we try to keep instances
for all neighbor relations (even the underrepresented ones, such as one-to-one
relations that otherwise could be discarded), and we try to keep a representative
enough subgraph while keeping an adequate size.

(3) Connecting paths building. This step is used in line 4 of Algorithm 1, and
fully expanded in Algorithm 2. In this step we use subgraphs extracted in step (2)
to build connecting paths, which are considered as ∆-equivalent to Q. For clarity,
we depict the process in Fig. 3. For a given pair of nodes (v1, v2) in PEXTG(Q), we
consider their corresponding subgraphs (line 1, Algorithm 2), and identify those
nodes that are endpoints of paths in both subgraphs (lines 2-3, Algorithm 2). In
other words, we find the so-called target nodes in which the subgraphs intersect.
A target node is a connecting point which allows us to connect nodes from the
domain and range of a query Q. Thus, we build connecting path around them
as shown in Fig. 3. Notice that when creating a connecting path from a target
node, we must append the inverse of the path from the right subgraph to the
one on the left (line 6, Algorithm 2). This is because paths on the right subgraph
originally considers v2 as starting point, while now v2 becomes the final point.
The Inverse(·) function in line 6 of Algorithm 2 inverts a path walking backwards:
Let P = 〈v0 ,e1,. . .,vk−1 ,ek,vk 〉, then Inverse(P) = 〈vk ,ek−1,vk−1 ,. . .,e1−1,v0 〉,
and (ei

−1)−1 = ei. The output of this step is a set of connecting paths which are
ranked in the next step.

(4) Candidate Path Ranking. This is the last step and line 5 of Algorithm 1.
After extracting connecting paths between nodes of the PEXTG(Q), we can de-
sign a ranking function in order to get the most relevant ∆-equivalences. We
argue that such a ranking function should consider three criteria to rank candi-
dates P ∈ C: (Cr-1) if P �∆ Q, then the size of the PEXTG(P) set could be big
but always smaller than the size of PEXTG(Q); (Cr-2) the number of instances
of P among the candidates should be normalized to avoid ranking first the more
frequent paths; and (Cr-3) users can specify whether they would like longer
or shorter paths on top of the ranking. To satisfy all requirements enumerated
above, we designed the following ranking function:

RankQ(P) = α
|PEXTG(P)|
|PEXTG(Q)|︸ ︷︷ ︸

Cr-1

+β
σ(P)

max{σ(Pi) : Pi ∈ C}︸ ︷︷ ︸
Cr-2

+γ
|Q| − |P |

max{|Q|, |P |}︸ ︷︷ ︸
Cr3

, (2)

where each criterion is weighted using constants α, β, and γ; and σ(P) returns
the total count of instances of path P in C. The parameters α, β, and γ can
be defined by a user to match her expectations of the rank, and are set to 1 in
our experiments. In Equation 2, we implement Cr-1 using the Jaccard index
to find those paths whose PEXT is similar enough to the query one. Remember
that we only compute PEXT(Q) extensively, while PEXT(P) is obtained from
the former, and will always be a subset of it. Therefore, the Jaccard index is
reduced to the simple ratio in Cr-1.

Using this tri-criteria function users are allowed to tune the ranking in order
to favor, e.g., shorter paths setting γ = +1, or longer ones using γ = −1.
Similarly, the other two criteria can be highlighted or decreased tuning α and β.

5 Experimental Evaluation

In this section, we present the set up of our experiments considering four different
KGs, and discuss results that are encouraging for further research in this area.

5.1 Experimental Setup

We design a set of test cases using four large and well-known KGs, generated from
different sources and tailored to different domains. To the best of our knowledge,
there is no benchmark to evaluate equivalence between relation paths. Zhang et
al. [23] have a crowd-sourced gold standard for single relations not covering
complex relation paths, so it does not meet our requirements. We consider the
generation of a gold standard for relation paths as future work, and here our
goal is to examine the capabilities of our proposed approach for finding ∆-
equivalences. For each dataset we propose two queries that are evaluated and
the ∆-equivalent paths are ranked. Furthermore, for the top-5 results of each
query, we present the values of the three criteria, and the ranking score.

Dataset. Our proposed method relies on KG exploration to search for equiva-
lences. We noticed that more interesting results arise from KGs with a rich set of

Table 1: Statistics of knowledge graphs used in our experiments.

NELL DBpedia YAGO3 WordNet

#Entities - |V | 1.2M 1.2M 2.6M 10K
#Relations - ΣE 520 644 36 18

#Triples - |E| 3.8M 4M 5.5M 141K

interconnected entities and relation paths. A possible reason is that in KGs with
low depth relation paths are rather short and more prone to contain loops with
inverse relations. Here, we use four commonly used and general human knowledge
KGs of different size and domain (Table 1 shows their characteristics): (A) Never
Ending Learning (NELL) [19] is a knowledge base generated continuously by a
never-ending machine learning system that crawls web pages and extracts facts
from a pre-defined set of categories and relations; (B) YAGO3 [16] applies simi-
lar techniques to NELL, but it limits its sources to Wikipedia and WordNet [18];
(C) DBpedia [13] is a crowd-sourced knowledge base extracted from Wikipedia
and Geonames as sources; and (D) WordNet [18] is a large lexical database of
English, linking words and concepts using cognitive synonyms.

Queries. To date, there is no publicly available gold standard for relation paths
equivalence. The generation of such a gold standard requires a deep understand-
ing of the structure and semantics of a knowledge graph, which is not always
available, showing the importance of having methods as the one described here.
Therefore, we evaluate our method by using a set of eight manually generated
queries, and leave as future work the generation of such a gold standard. For
each knowledge graph in Table 1, we manually generated two relation paths that
are used as queries. The queries are of different length, include inverse relations
when possible, and cover different topics according to the domain of the KGs.

Implementation. In general, we implemented our approach using Python 3.5.
We use adjacency lists (which provides a time complexity O(1) to find neighbors
of a node) as data structure for storing the knowledge graphs in memory. Because
our method considers inverse relations, we include the symmetric closure G± of
the KG for easy traversal. As an optimization, the discovery of connecting paths
can be performed in parallel, giving one pair of nodes to a thread/process which
computes connecting paths between them, and stores the results in a shared
variable among threads. All experiments are executed in a Linux virtual machine
configured with 40GB of RAM and 10 processing cores of 2.20GHz.

5.2 Results

As shown in Table 2, the running time of the algorithm varies between 35 and
193 minutes when considering 1000 elements in the relation path extensions. We
noticed that such limit is reached in queries B.1, B.2, and C.1 only, while for all
other cases a size of 500 should be sufficient. To put the running time in contrast,
we also ran the same experiments using a limit size of 100 in the relation path
extensions, and got running times between 4 and 60 minutes. Running time
values depend on the size of the KG (see Table 1) and on the cardinality of the

relations included in the relation paths. Table 2 shows the queries for the first
three dataset with the ranked equivalences. For each relation path answer, we
report the values of each criterion, and the final ranking score w.r.t. Equation 2.

Remember that what we extract are ∆-equivalences, and in order to identify
PEXT-equivalences from them, we try to determine whether Q ≡ P for a given
path P in the results of Q. We capture this comparison by using the Jaccard
similarity between the full PEXT of a query and its ∆-equivalent paths. If the
Jaccard similarity is 1, we can safely state that Q ≡ P ; otherwise, the similarity
value gives us a relative indication of how similar they are. We noticed that
checking whether Q ≡ P for the top results of queries over NELL, DBpedia
and YAGO3 quickly becomes infeasible, and we stopped our processes after 24
hours. We associate this high computation time to the existence of relations with
many-to-many cardinality and large number of instances which, as mentioned
earlier, directly affects the computation of PEXT.

On the other hand, we have WordNet queries 〈 hypernym〉and 〈 part of〉,
which are composed of single relations that usually do not contain many range
values for a given entity. In these cases, it was easy to compute the full
PEXT and generate a score for the equivalences. We found that 〈 hypernym〉 ≡
〈 hyponym−1〉 and 〈 part of〉 ≡ 〈 has part−1〉 are 87.7% and 87.5% similar, re-
spectively, according to the KG. In theory they are strictly equivalent, indicating
the effectiveness of our ranking function. Because of the characteristics of our
method, we cannot tell if these numbers should be higher, but could be consid-
ered as a sign that the KG is incomplete.

We also observed that some query results differ from the query in
length and building relations. A clear example of it is given by the path
P = 〈cityLiesOnRiver−1,generalizations,generalizations−1〉, which ranks higher for
query A.1, and contains new and different relations from the query. Also, its
semantics “a city has a river, and city has a generalization” is different from
the original relation path query semantics. In NELL [19], the relation general-
izations is common and acts as a meta relation for classes of entities, e.g., the
generalization of a city is Location. So, the second part of P is a loop decoded as
“a city is a location, and location is a generalization of a city”. A deeper study
is required to analyze other possible equivalences between individual relations
that appear in the results, such as cityLiesOnRiver and riverFlowsThroughCity, or
athletePlaysForTeam and teamMember, or citySportsTeams and teamPlaysInCity.

YAGO query results are also interesting. First result for query B.1 is a loop
around wasBornIn, while the 2nd, 3rd and 4th results show ∆-equivalence to a
single relation, having a high Cr-3. Interestingly, for query B.2, we get an empty
path as result, which indicates that actors are also directors of movies where they
perform. And that some actors are married to the directors of the movies.

Results for DBpedia queries C.1 and C.2 are usually high in Cr-2, meaning
that the data are relatively complete. For C.1 we get an interesting results us-
ing a relation path between songs and their artists (band members) as query.
Equivalent paths usually include bands associated to the artists, and even gen-
res and instruments of the artists. In query C.2, we can see that the relation

Table 2: Top-5 best ranked ∆-equivalent paths for example queries.
Query RankQ(P) Cr-1 Cr-2 Cr-3

Query A.1: 〈riverEmptiesIntoRiver,riverFlowsThroughCity〉 Time ca. 53.2 min. 519 instances

〈cityLiesOnRiver−1,generalizations,generalizations−1〉
〈riverFlowsThroughCity,generalizations,generalizations−1〉
〈cityLiesOnRiver−1,generalizations,generalizations−1,generalizations−1〉
〈riverFlowsThroughCity,generalizations,generalizations−1,generalizations−1〉
〈riverEmptiesIntoRiver,cityLiesOnRiver−1〉

1.342
1.337
1.192
1.189
1.015

0.688
0.688
0.692
0.692
0.996

0.987
0.982
1.000
0.997
0.019

-0.333
-0.333
-0.500
-0.500
0.000

Query A.2: 〈athletePlaysForTeam,teamHomeStadium,stadiumLocatedInCity〉 Time ca. 35 min. 326 instances

〈athletePlaysForTeam,generalizations,generalizations−1,citySportsTeams−1〉
〈athletePlaysForTeam,generalizations,generalizations−1,teamPlaysInCity〉
〈teamMember−1,generalizations,generalizations−1,citySportsTeams−1〉
〈athletePlaysForTeam,teamPlaysAgainstTeam−1,teamPlaysAgainstTeam−1,

citySportsTeams−1〉
〈teamMember−1,generalizations,generalizations−1,teamPlaysInCity〉

1.404
1.353
1.264
1.249

1.244

0.770
0.764
0.739
0.531

0.733

0.884
0.839
0.775
0.969

0.761

-0.250
-0.250
-0.250
-0.250

-0.250

Query B.1: 〈wasBornIn,isLocatedIn〉 Time ca. 118 min. 1000b instances

〈wasBornIn,isLocatedIn,isLocatedIn−1,isLocatedIn〉
〈isCitizenOf〉
〈isPoliticianOf〉
〈livesIn〉
〈hasGender,hasGender−1,isPoliticianOf〉

1.276
1.025
0.517
0.514
0.507

0.776
0.016
0.013
0.007
0.332

1.000
0.001
0.001
0.000
0.243

-0.500
0.500
0.500
0.500
-0.333

Query B.2: 〈actedIn,directed−1〉 Time ca. 193 min. 1000b instances

〈actedIn,isLocatedIn,isLocatedIn−1,directed−1〉
〈hasGender,hasGender−1〉
〈actedIn,actedIn−1,actedIn,directed−1〉
〈ε〉a
〈isMarriedTo〉

1.360
0.587
0.524
0.518
0.503

0.860
0.583
0.674
0.018
0.003

1.000
0.004
0.350
0.000
0.000

-0.500
0.000
-0.500
0.500
0.500

Query C.1: 〈artist,bandMember〉 Time ca. 58 min. 1000b instances

〈artist,associatedMusicalArtist−1,associatedBand,bandMember〉
〈artist,associatedBand−1,associatedMusicalArtist,bandMember〉
〈artist,associatedBand−1,associatedMusicalArtist,associatedBand−1〉
〈artist,associatedMusicalArtist−1,associatedBand,associatedMusicalArtist−1〉
〈genre,instrument,instrument−1,genre−1〉

1.435
1.429
0.953
0.952
0.736

0.935
0.935
0.524
0.524
0.432

1.000
0.994
0.929
0.928
0.804

-0.500
-0.500
-0.500
-0.500
-0.500

Query C.2: 〈academicAdvisor,almaMater〉 Time ca. 80 min. 335 instances

〈academicAdvisor,birthPlace,birthPlace−1,almaMater〉
〈academicAdvisor,deathPlace,birthPlace−1,almaMater〉
〈almaMater〉
〈academicAdvisor,deathPlace,deathPlace−1,almaMater〉
〈notableStudent−1,almaMater〉

1.080
0.846
0.641
0.587
0.540

0.580
0.575
0.121
0.620
0.459

1.000
0.771
0.020
0.467
0.081

-0.500
-0.500
0.500
-0.500
0.000

(a) ε denotes the empty path
(b) maximum size of the PEXT set reached

path 〈academicAdvisor,almaMater〉 can be ∆-equivalent to 〈almaMater〉, i.e., peo-
ple usually graduate from the university where their supervisor studied. We also
get that they usually were a notableStudent for their supervisor.

6 Related Work

Research on equivalences in knowledge graphs (bases) has been mainly focused
on single relations, which are emulated by our approach as paths of unitary
length. In [23], authors address the problem of mining equivalent relations from
Linked Data datasets as a clustering problem using an equivalence score. Simi-
larly, [20] deals with the problem of finding synonymous relations in Linked Data
using an itemset mining approach on the domain and range types of a relation

instance. Both [23,20] require the notion of typed entities and do not consider in-
verse relations, which are significant shortcomings for mining knowledge graphs.
Here, we consider variable-length relation paths with inverse relations, and al-
though we do not require any kind of schema knowledge, our method can benefit
from it, e.g., in the interpretation of paths. [8] used distributional semantics to
find semantically related class type paths, i.e. meta paths, using latent feature
space. Our work is also related to AMIE+ [9], a system for mining Horn rules
in knowledge bases, where in each rule the body is a path and the head is a
relation. Our work is orthogonal to [9] since we do not focus on mining rules,
but rather on ranking the most prominent equivalences for a given relation path.
The application of our method for rule mining, considering more generic rules
than Horn rules, is part of our future work. Last but not least, [23] describes an
annotation process that could be used for generating a gold standard applicable
to evaluation of the presented approach and other similar experiments.

7 Conclusions and Future Work

We explored the problem of identifying relation path equivalences in KGs us-
ing a data-driven, unsupervised and domain independent method. We addressed
several practical and theoretical issues regarding finding strict equivalences, and
proposed a more efficient, approximate approach that is still able to bring valu-
able insights. Using different test queries, we show that our approach can effi-
ciently rank candidates that are ∆-equivalent. In our experiments, we achieved
results consistent with our initial assumptions, as our method retrieved intu-
itively similar relation paths that were, however, of different length and contained
different relations when compared to the input query.

As a part of our future work, we intend to perform a user evaluation of the
ranking results to: (1) come up with a universally applicable gold standard for
relation paths equivalence, and (2) determine the influence of particular weights
in the tri-criteria function on the performance of the method across different use
cases. We are also interested in using the ∆-equivalences between relation paths
to improve embedding and prediction methods that require a deeper knowledge
of the KG structure. An example could be generating similar embeddings for
entities that have equivalent relation paths.

References

1. Abiteboul, S., Hull, R., Vianu, V., eds.: Foundations of Databases: The Logical
Level. 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(1995)

2. Baeza, P.B.: Querying graph databases. In: PODS, ACM (2013) 175–188
3. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of con-

junctive regular path queries with inverse. In: KR, Morgan Kaufmann (2000)
176–185

4. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Reasoning on regular
path queries. SIGMOD Record 32(4) (2003) 83–92

5. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: STOC, ACM (1977) 77–90

6. Consens, M.P., Mendelzon, A.O.: GraphLog: a visual formalism for real life recur-
sion. In: PODS, ACM Press (1990) 404–416

7. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: KDD, ACM (2014) 601–610

8. Freitas, A., da Silva, J.C.P., Curry, E., Buitelaar, P.: A distributional semantics ap-
proach for selective reasoning on commonsense graph knowledge bases. In: NLDB.
Volume 8455 of Lecture Notes in Computer Science., Springer (2014) 21–32

9. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB J. 24(6) (2015) 707–730

10. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoc, D.: SPARQL with property
paths. In: International Semantic Web Conference (1). Volume 9366 of Lecture
Notes in Computer Science., Springer (2015) 3–18

11. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-
constrained random walks. Mach. Learn. 81(1) (October 2010) 53–67

12. Lao, N., Subramanya, A., Pereira, F.C.N., Cohen, W.W.: Reading the web with
learned syntactic-semantic inference rules. In: EMNLP-CoNLL, ACL (2012) 1017–
1026

13. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from Wikipedia. Semantic Web 6(2)
(2015) 167–195

14. Lin, X., Liang, Y., Guan, R.: Compositional learning of relation paths embedding
for knowledge base completion. CoRR abs/1611.07232 (2016)

15. Lin, Y., Liu, Z., Sun, M.: Modeling relation paths for representation learning of
knowledge bases. CoRR abs/1506.00379 (2015)

16. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: A knowledge base from
multilingual wikipedias. In: CIDR, www.cidrdb.org (2015)

17. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
SIAM J. Comput. 24(6) (1995) 1235–1258

18. Miller, G.A.: WordNet: A lexical database for english. Commun. ACM 38(11)
(1995) 39–41

19. Mitchell, T.M., Cohen, W.W., Jr., E.R.H., Talukdar, P.P., Betteridge, J., Carlson,
A., Mishra, B.D., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis,
K., Mohamed, T., Nakashole, N., Platanios, E.A., Ritter, A., Samadi, M., Settles,
B., Wang, R.C., Wijaya, D.T., Gupta, A., Chen, X., Saparov, A., Greaves, M.,
Welling, J.: Never-ending learning. In: AAAI, AAAI Press (2015) 2302–2310

20. Morzy, M., Lawrynowicz, A., Zozulinski, M.: Using substitutive itemset mining
framework for finding synonymous properties in Linked Data. In: RuleML. Volume
9202 of Lecture Notes in Computer Science., Springer (2015) 422–430

21. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL.
In: PODS, ACM (2014) 39–50

22. Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata.
Inf. Process. Lett. 30(5) (1989) 261–264

23. Zhang, Z., Gentile, A.L., Augenstein, I., Blomqvist, E., Ciravegna, F.: Mining
equivalent relations from Linked Data. In: ACL (2), The Association for Computer
Linguistics (2013) 289–293

	Identifying Equivalent Relation Paths in Knowledge Graphs

