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Abstract. The increasing popularity of XML for persistent data stor-
age, processing and exchange has triggered the demand for efficient al-
gorithms to manage XML data. Both industry and academia have long
since recognized the importance of keys in XML data management. In
this paper we make a theoretical as well as a practical contribution to
this area. This endeavour is ambitious given the multitude of intractabil-
ity results that have been established. Our theoretical contribution is
based in the definition of a new fragment of XML keys that keeps the
right balance between expressiveness and efficiency of maintenance. More
precisely, we characterize the associated implication problem axiomati-
cally and develop a low-degree polynomial time decision algorithm. In
comparison to previous work, this new fragment of XML keys provides
designers with an enhanced ability to capture properties of XML data
that are significant for the application at hand. Our practical contribu-
tion includes an efficient implementation of this decision algorithm and
a thorough evaluation of its performance, demonstrating that reasoning
about expressive notions of XML keys can be done efficiently in practice,
and scales well. Our results promote the use of XML keys on real-world
XML practice, where a little more semantics makes applications a lot
more effective. To exemplify this potential, we use the decision algo-
rithm to calculate non-redundant covers for sets of XML keys. In turn,
this allow us to reduce significantly the time required to validate large
XML documents against keys from the proposed fragment.

1 Introduction

Keys are the most important class of integrity constraints used in database
management. First of all, they provide a mechanism for identifying objects in



database instances, thus establishing an invariant relationship between objects
in the real world and their representation in the database. The increasing pop-
ularity of XML [6] for persistent data storage and data processing has triggered
the demand for efficient algorithms to manage XML data. Both industry and
academia have long since recognized the importance of keys in XML data man-
agement. Over the last decade, several notions of XML keys have been proposed
and discussed in the database community. (See [14] for a brief overview). The
most influential proposal is due to Buneman et al. [7, 8] who defined keys on the
basis of an XML tree model similar to the one suggested by DOM [3] and XPath
[10]. Figure 1 shows such a representation in which nodes are annotated by their
type: E for element nodes, A for attribute nodes, and S for text nodes (PC-
DATA). While Buneman et al. studied keys as a concept orthogonal to schema
specification (such as DTD or XSD), their proposal has been adopted by the
W3C for the XML Schema standard [23] subject to some minor, though es-
sential modifications (see [4] for a discussion). Today, all major XML-enabled
DBMSs, XML parsers and editors (such as XMLSpy) support keys.

The XML keys considered in this work uniquely identify nodes in an XML
tree by (complex) values on some selected descendant nodes. These keys are
defined using path expressions to select the relevant sets of nodes. In Figure 1, a
clear example of a key is that a bank node can be uniquely identified by the value
of its name attribute. This is an instance of an absolute key which is satisfied if it
holds globally in the entire XML tree. We also work with relative keys, which are
satisfied if they hold locally within some subtrees. For instance, in every subtree
rooted at an account node, a transaction node can be uniquely identified by
the value of its child node, which can either be a withdrawal node or a deposit
node. This XML key might not hold in the entire tree since there might well
be different withdrawals or deposits made at the same time, on the same day
and for the same amount, as long as they do not belong to the same account.
We emphasize that the element nodes withdrawal and deposit have complex
content. Thus, checking whether two transaction nodes violate this latter key
involves testing whether the subtrees rooted at their respective child nodes are
isomorphic to one another, with the identity on string values.

1.1 Motivation

For relational data, keys have been widely used to improve the performance of
many perennial tasks in database management, ranging from consistency check-
ing to query answering. The hope is that keys will turn out to be equally bene-
ficial for XML. One of the most fundamental questions on keys is that of logical
implication, that is, deciding if a new key holds given a set of known keys.
If the implication of XML keys can be decided efficiently, then it is possible
to take advantage not only of those keys that were specified explicitly by the
database designer, but also of those ones that were specified implicitly. Among
other things, this is important for minimizing the cost of validating that an XML
document satisfies a set of keys gathered as business rules during requirements
engineering.



〈bank name=“ANZ”〉〈branch name=“Downtown”〉
〈client cno=“JOH23144”〉〈account no=“2144964”,kind=“savings”〉

〈transaction〉〈withdrawal〉
〈date〉“2012.02.04”〈/date〉〈time〉“13:01:03”〈/time〉〈amount〉“$500.00”〈/amount〉

〈/withdrawal〉〈/transaction〉
〈transaction〉〈deposit〉

〈date〉“2012.02.04”〈/date〉〈time〉“14:15:03”〈/time〉〈amount〉“$302.34”〈/amount〉
〈/deposit〉〈/transaction〉

〈/account〉〈/client〉
〈/branch〉〈/bank〉
〈bank name=“BNZ”〉〈branch name=“Northshore”〉

· · ·
〈/branch〉〈/bank〉

E

E

E

E

E

A

A

A

E EE

SSS

E

E E E

S SS

E

E E E

A

A

E

SS S

E E E

E

E

E

E

A

A

A

E

E

E E E

SS S

E

E

A

A

SSS

E E E

no

db

bank

branch

client

account

BNZ

cno

name

bname

Northshore

PET23144

09:15:35 $670.342012.02.05

date time amount

2012.02.05 11:47:50 $60.00

transaction

date time

kind

Cheque

7056324 transaction

withdrawalwithdrawal

$500.002012.02.04

amounttimedate

13:01:03

bname

name
bank

branch

client

account

amounttimedate

14:15:03

transaction

cno

JOH23144

Downtown

ANZ

withdrawal

transaction

deposit

transaction

deposit

kind

no

2144964

savings

amounttimedate

2012.02.04 13:01:03 $500.00 2012.02.04 $302.34

amount

Fig. 1. XML data fragment and its tree representation.

Example 1. Suppose, a database designer has already specified an XML key ϕa

which expresses that in every subtree rooted at a bank node, a client node can be
uniquely identified by its child attribute cno together with its child node account.
Later on, another of the database designers discovers that the cno attribute can
by itself be used to identify a client node relatively to a bank node, and thus
defines a new suitable XML key ϕb. It is easy to see that if ϕb is satisfied by an
XML tree T , then also the former key ϕa is satisfied by T . That is, ϕb implies
ϕa. Thus, we can validate an XML tree T against both keys by just checking
whether T satisfies ϕb, since T will satisfy both ϕa and ϕb iff it satisfies ϕb. We
would like to emphasize that the account nodes have complex content. Thus,
checking whether two client nodes in T violate ϕa is quite costly in terms of
time, since it involves testing whether the subtrees rooted at their account nodes
are isomorphic to one another, with the identity on string values. In contrast,
checking whether two client nodes violate ϕb only involves checking equality on
the text nodes of their respective cno attributes. ⊓⊔



No less important, facilities for reasoning about XML keys present numer-
ous opportunities for designing XML databases and views that permit a more
efficient processing of frequent queries and updates.

Example 2. Let us consider the following XQuery, which expresses over XML
trees with the structure of the tree in Figure 1, a client request for her transac-
tions on an specific account and date.

for $a in doc(“transactions.xml”)//account[@no]=“2144964”
where $a//date/text() =“2012.02.04”
return 〈transactions〉{$a/transaction/*}〈/transactions〉

Also, let us assume that this is the most frequent type of query. It is expensive
to process an XQuery such as this one over an XML tree with the layout of
the tree in Figure 1, since for all transaction nodes of the selected account, it
has to be decided if it has a descendant date node which corresponds to the
specified date. This is due to the fact that there can be many transactions on
the selected account for the given date, and thus a transaction node cannot be
uniquely identified by its descendant date node. Note that this key is therefore
not implied by the keys that apply to the XML tree. Also note that if the
transaction nodes are encrypted, then the evaluation of the query requires us to
decrypt every single one of them for the selected account. In this case, the layout
illustrated in Figure 2 represents a better choice. The target transaction nodes
are now grouped together as child nodes of a target txdate node. Redundancies
with respect to dates for a given account are eliminated, which results in a better
overall design. Moreover, only those transaction nodes which are child nodes of
the selected txdate node need to be decrypted. Note that these improvements are
due to the existence of a new relative key which specifies that, in every subtree
rooted at an account node, a txdate node can be uniquely identified by the value
of its date attribute. The original XQuery is rewritten into

for $a in doc(“transactions.xml”)//account[@no]=“2144964”
where $a/txdate[@date] =“2012.02.04”
return 〈transactions〉{$a/txdate/transaction/*}〈/transactions〉

⊓⊔

A further example of an area in which the implication of XML keys is of
tremendous benefit is semantically rich data exchange.

Example 3. Suppose we need to share part of the information on bank trans-
actions with the Reserve Bank, and that due to legal requirements we need to
eliminate the information regarding clients and individual accounts. Thus, we
generate a view over the XML tree which skips the no attribute of the account
nodes and the cno attribute of the client nodes. Clearly, it would be useful to
provide the Reserve Bank with the set of keys defined for the original XML tree.
In light of this additional semantic information, they could better interpret the
XML tree. For instance, they could deduce from those keys that a client node
was identifiable in the original XML document by a cno attribute relatively to a
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Fig. 2. XML data fragment with improved layout.

bank node. Furthermore, they could check whether the specified keys allow one
to conclude further keys which are useful for extraction and processing of the
data in the provided XML document. For instance, they could check whether
the specified keys allow one to conclude a further key stating that a client node
can be identified by its descendant account nodes relatively to a bank node. ⊓⊔

1.2 Related Work

The definition of keys, adopted by the W3C for XML Schema [23], is currently
the industry standard for specifying keys. However, Arenas et al. [4] have shown
the computational intractability of the associated consistency problem, i.e., the
question whether there exists an XML document that conforms to a given XSD
and satisfies the specified keys. A further issue pointed out by Buneman et al. [7]
is the fact that XML Schema restricts value equality to string-valued data items.
But there are cases in which keys are not so restricted (see Section 7.1 of [7] for
discussion). In particular, we have given examples of XML keys that require a
less restricted notion of equality, since they require us to test equality on element
nodes such as withdrawal and deposit which are not string-valued. On the other
hand, the expressiveness and computational properties of XML keys with good
reasoning capabilities have been deeply studied from a theoretical perspective
[7, 8, 15, 16, 11].

In practice, however, expressive yet tractable notions of XML keys have been
mostly ignored. Even though several algorithms that validate XML documents



against sets of certain XML keys have been proposed and tested with promising
results (see e.g. [9, 18]), none of them make use of the reasoning capabilities of
XML keys as suggested in Example 1.

Aiming to fill this gap between theory and practice, we initiated in [12] an
empirical study of an XML key fragment, namely the fragment of XML keys with
nonempty sets of simple key paths. As shown in [8, 15], automated reasoning
about this XML key fragment can be done efficiently, in theoretical terms. Our
work confirmed this fact in practice. This article extends these earlier works
by considering a strictly more expressive fragment of XML keys which allows
the use of single- and variable-length wildcards in the path language used to
specify the keys, as well as empty sets of key paths for the specification of
structural keys which identify nodes (within subtrees) by unique paths instead
of unique data value. In fact, we establish a fragment that strictly includes the
already expressive fragments of XML keys explored in [16, 11] without resigning
efficiency.

1.3 Contributions

Evidently, the expressiveness (but also the tractability) of a fragment of XML
keys will depend on the query language used to navigate between nodes in trees.
As common in XML data processing, path expressions are used to select the
nodes of interest. The preferred languages for selection queries against XML
data are XPath queries [10] and fragments thereof. The flexibility provided by
these languages is probably not needed for every application, but there are many
applications where flexibility is essential. Taken that XML is widely used to
represent heterogeneous data, the expressiveness that comes with wildcards and
descendant queries is highly appreciated. One may think of data integration
where data from different sources are stored in the same document. Though not
uniformly structured, the data should still be analyzed using the same ‘one fits
all’ query to avoid extensive maintenance costs. This can only be achieved when
using a sufficiently rich query language.

Thus, our first contribution establishes a new fragment of XML keys (namely
Max-Keys) that keeps the right balance between expressiveness and efficiency
of maintenance. More precisely, we characterize the associated implication prob-
lem axiomatically, and propose a low-degree polynomial time decision algorithm.
The set of XML keys that are expressible in this new fragment includes strictly
the sets of XML keys that are expressible in the fragments considered in previ-
ous proposals [15, 16, 11, 12]. The first source of expressiveness results from the
very general notion of value equality: two element nodes v and w are considered
value equal, if the subtrees rooted at v and w are isomorphic by an isomor-
phism that is the identity on string values. This contrasts with more restrictive
notions, for instance with value equality on leaf nodes. The second source of ex-
pressiveness is a result of the path language we use to select nodes. This includes
the single-label wildcard, child navigation, and descendant navigation as known
from XPath. Note that in [12] we have considered XML keys whose context and
target nodes can be selected by a path language that uses child navigation and



descendant navigation, and key nodes by using only child navigation. While this
fragment of XML keys can already capture many desirable properties, the Max-
Keys fragment proposed in this paper captures a considerably more expressive
class of properties by allowing the use of single-label wildcards, a controlled use
of variable-length wildcards in the key paths and XML keys without key paths
that allow one to express structural keys.

Our second contribution concerns the exploration of this theoretical ideas in
practice. We develop and implement an efficient algorithm that decides the im-
plication problem for Max-Keys and thoroughly evaluate its performance. Our
performance tests give empirical evidence that reasoning about expressive no-
tions of XML keys is practically efficient, and scales well. In fact, the performance
of this new algorithm is comparable to the performance of the algorithm pre-
sented in [12] for a strictly less expressive fragment of XML keys. Our results
unleash XML keys on real-world XML practice, where a little more semantics
makes applications a lot more effective.

There is indeed great potential for practical uses of the proposed decision
algorithm. For instance, the process of checking XML data integrity against
XML keys can benefit a lot from the ability to decide implication efficiently.
Clearly, if a set Σ of XML keys implies an XML key ϕ, and we have already
checked that an XML data tree satisfies Σ, then there is no need to test ϕ any
more, saving considerable resources. Thus, exploiting our algorithm we compute
non-redundant covers for sets of XML keys. A set Σ of keys is non-redundant if
there is no key σ in Σ such that σ is implied by Σ−{σ}. Same than for the less
expressive fragment of XML keys studied in [12], our experiments show that the
time to compute a non-redundant cover for a given set of keys in the fragment
of Max-Keys, is just a small fraction of the average time needed to validate an
XML document against a single key.

We would like to note that the experiments carried out in this article extend
the experiments presented in [12] in several ways. Firstly, we consider XML keys
which are more expressive than the keys studied in our previous paper. Secondly,
we test the new implication algorithm by considering even larger sets of XML
keys (of up to 180 keys). Thirdly, we include a new XML document which holds
the complete Chilean electoral roll in our validation experiments. This XML
document, which contains 3.2GB of data, is several orders of magnitude larger
than the XML documents usually considered in previous works in this area.
Finally, we compute all non-redundant covers that are subsets of a given set of
XML keys, and rank them according to the time it takes for their validation.
This provides valuable information which can be used in practice to design XML
documents which are more efficient to validate. For replication purposes, all
the data sets used in our experiments as well as the full set of results can be
downloaded from http://emir-munoz.github.com/xml-constraints.

1.4 Organization

We recall basic concepts and fix the formal notation in Section 2. In Section 3
we define the central notion of XML key and introduce a new and expressive



fragment of XML keys (namely the Max-Keys). We establish a finite set of in-
ference rules for deriving new Max-Keys in Section 4 and prove its completeness
in Section 5. In Section 6, we presents an efficient algorithm for deciding impli-
cation of Max-Keys as well as an implementation thereof. We present the results
regarding the application and performance evaluation of our decision algorithm
for the finite implication problem of Max-Keys, as well as an strategy to use this
algorithm in the context of XML document validation, in Section 7. We conclude
the paper in Section 8 with final remarks.

2 Preliminaries

2.1 XML Data Representation

We use the common representation of XML data as ordered, node-labeled trees.
Let E denote a countably infinite set of element tags, A a countably infinite

set of attribute names, and {S} a singleton set denoting text (PCDATA). These
sets are pairwise disjoint. The elements of L = E ∪A ∪ {S} are called labels.

An XML tree is a 6-tuple T = (V, lab, ele, att, val, r) where V is a set of
nodes, and lab is a mapping V → L assigning a label to every node in V . A node
v ∈ V is an element node if lab(v) ∈ E, an attribute node if lab(v) ∈ A, and
a text node if lab(v) = S. Moreover, ele and att are partial mappings defining
the edge relation of T : for any node v ∈ V , if v is an element node, then ele(v)
is a list of element and text nodes, and att(v) is a set of attribute nodes in
V . If v is an attribute or text node, then ele(v) and att(v) are undefined. The
partial mapping val assigns a string to each attribute and text node: for each
node v ∈ V , val(v) is a string if v is an attribute or text node, while val(v) is
undefined otherwise. Finally, r is the unique and distinguished root node.

For a node v ∈ V , each node w in ele(v) or att(v) is called a child of v,
and we say that there is an edge (v, w) from v to w in T . A path p of T is
a finite sequence of nodes v0, . . . , vm in V such that (vi−1, vi) is an edge of T
for i = 1, . . . ,m. The path p determines a word lab(v1). · · · .lab(vm) over the
alphabet L, denoted by lab(p). For a node v ∈ V , each node w reachable from v
is called a descendant of v. Note that every XML tree has a tree structure: for
each node v ∈ V , there is a unique path from the root node r to v.

2.2 Value Equality of Nodes on XML Trees

Two nodes u, v ∈ V are value equal, denoted by u =v v, iff the subtrees rooted at
u and v are isomorphic by an isomorphism that is the identity on string values.
More formally, u =v v whenever the following conditions are satisfied:

a. lab(u) = lab(v).
b. If u, v are attribute or text nodes, then val(u) = val(v).
c. If u, v are element nodes, then (i) if att(u) = {a1, . . . , am}, then att(v) =

{a′1, . . . , a
′
m} and there is a permutation π on {1, . . . ,m} such that ai =v a′

π(i)

for i = 1, . . . ,m, and (ii) if ele(u) = [u1, . . . , uk], then ele(v) = [v1, . . . , vk]
and ui =v vi for i = 1, . . . , k.



Note that the notion of value equality takes the document order of the XML
tree into account. We remark that =v is an equivalence relation on the node set
V of the XML tree. As an example, the first and third transaction nodes (from
left to right) in Figure 1 are value equal while all the remaining transaction
nodes are not value equal to each other.

2.3 Node Selection Queries on XML Trees

Regular paths have been widely used to express queries for selecting nodes in
XML trees. In the sequel, we use the path language PL{., , ∗} consisting of ex-
pressions given by the following grammar:

Q → ℓ | ε | Q.Q | | ∗

Herein, ℓ ∈ L is any label, ε denotes the empty path expression, “.” denotes the
concatenation of two path expressions, “ ” denotes the single-label wildcard, and
“ ∗” denotes the variable-length wildcard.

Let P,Q be words from PL{., , ∗}. P is a refinement of Q, denoted by P . Q,
if P is obtained from Q by replacing variable-length wildcards in Q by words
from PL{., , ∗} and single-label wildcards in Q by labels from L. For example,
bank.branch.account is a refinement of bank. .account. Note that . is a pre-order
on PL{., , ∗}. Let ∼ denote the congruence induced by the identity ∗. ∗ = ∗ on
PL{., , ∗}, and observe that P ∼ Q holds if and only if P and Q are refinements
of each other. For example, bank. ∗.account ∼ bank. ∗. ∗.account.

Regular paths allow one to navigate in an XML tree. We briefly recall the
semantics of expressions from PL{., , ∗} in the context of XML. Let Q be a word
from PL{., , ∗}. A path p in the XML tree T is called a Q-path if lab(p) is a
refinement of Q. For nodes v, w ∈ V , we write T |= Q(v, w) if w is reachable
from v following a Q-path in T .

For a node v in the XML tree T , let v[[Q]] denote the set of nodes in T that
are reachable from v following any Q-path, that is, v[[Q]] = {w | T |= Q(v, w)}.
In particular, we use [[Q]] as an abbreviation for r[[Q]] where r is the root node.

For a subset Z ⊆ {., , ∗}, let PLZ denote the subset of PL{., , ∗} with expres-
sions restricted to the constructs in Z. In particular, PL{.} is the set of simple
path expression without wildcards.

Since attribute and text nodes in an XML tree T are always leaves, Q ∈
PL{., , ∗} is valid only if it has no labels ℓ ∈ A or ℓ = S in a position other than
the terminal one. Note that each prefix of a valid Q is valid, too.

Let P,Q be words from PL{., , ∗}. P is contained in Q, denoted by P ⊆ Q,
if for every XML tree T and every node v of T we have v[[P ]] ⊆ v[[Q]]. It follows
immediately from the definition that P . Q implies P ⊆ Q.

We work with the quotient set PL{., , ∗}

/∼ rather than with PL{., , ∗} directly:

A word from PL{., , ∗} is in normal form if it has no consecutive variable-length
wildcards, i.e., if it has no consecutive “ ∗” and no occurrence of “ ∗. ”. Note that,
each congruence class contains a unique word in normal form. Each word from
PL{., , ∗} can be transformed into normal form in linear time, just by removing



superfluous variable-length wildcards and replacing each occurrence of “ ∗. ” by
“ . ∗”. The length |Q| of a PL{., , ∗} expression Q is the number of labels in
Q plus the number of wildcards (counting both variable-length and single-label
wildcards) in the normal form of Q.

The empty path expression ε has length 0. The natural homomorphism from
PL{., , ∗} to PL{., , ∗}

/∼ is an isomorphism when restricted to words in normal form.

By abuse of notation we use the words from PL{., , ∗} to denote their respective
congruence class.

For nodes v and v′ of an XML tree T , the value intersection of v[[Q]] and
v′[[Q]] is given by v[[Q]] ∩v v′[[Q]] = {(w,w′) | w ∈ v[[Q]], w′ ∈ v′[[Q]], w =v w′}.
That is, v[[Q]] ∩v v

′[[Q]] consists of all those node pairs in T that are value equal
and are reachable from v and v′, respectively, by following Q-paths.

3 Keys for XML Data

The expressiveness of our fragment of XML keys results from the generality of
our notion of value-equality and that of the path language. For more expressive
path languages the containment problem becomes at least intractable [20].

Definition 1. An XML key ϕ in is an expression of the form

(Qϕ, (Q
′
ϕ, {P

ϕ
1 , . . . , Pϕ

kϕ
}))

where Qϕ, Q
′
ϕ, P

ϕ
1 , . . ., Pϕ

kϕ
∈ PL{., , ∗} such that Qϕ.Q

′
ϕ.P

ϕ
1 , . . ., Qϕ.Q

′
ϕ.P

ϕ
kϕ

are valid, and where kϕ is a non-negative integer.
An XML tree T satisfies ϕ if and only if ∀q ∈ [[Qϕ]] ∀q

′
1, q

′
2 ∈ q[[Q′

ϕ]]





∧

1≤i≤k

q′1[[P
ϕ
i ]] ∩v q

′
2[[P

ϕ
i ]] 6= ∅



 ⇒ q′1 = q′2.

Herein, Qϕ is called the context path, Q′
ϕ is called the target path, and

Pϕ
1 , . . . , Pϕ

kϕ
are called the key paths of ϕ.

By the previous definition, if the set of key paths is non empty (i.e. k ≥ 1),
a key ϕ is satisfied by a tree T if and only if for every node q ∈ [[Qϕ]] and all
nodes q′1, q

′
2 ∈ q[[Q′

ϕ]] such that there are nodes xi ∈ q′1[[P
ϕ
i ]], yi ∈ q′2[[P

ϕ
i ]] with

xi =v yi for all i = 1, . . . , k, then q′1 = q′2. On the other hand, if the set of
key path is empty, a key ϕ is satisfied by a tree T if and only if for every node
q ∈ [[Qϕ]] there is at most one node reachable from q by following a Q′

ϕ-path,
i.e., q[[Q′

ϕ]] contains at most one element. Thus, these latter keys identify nodes
(within certain subtrees) by a unique path while the keys with nonempty sets
of key paths identify nodes (within subtrees) by unique data values. Hence, we
introduce the term structural keys for keys that have an empty set of key path
expressions.



Example 4. We formalize the XML keys discussed in the introduction over XML
trees with the layout of the tree T depicted in Figure 1.

a. (ε, (bank, {name})) expresses “a bank node can be uniquely identified by the
value of its name attribute”. Over trees with this layout, the same can be
expressed by (ε, ( , {name}) and also by (ε, ( , { ∗.name})) among others.

b. ( ∗.account, (transaction, { })) expresses “in every subtree rooted at an ac-
count node, a transaction node can be uniquely identified by the value of its
child node, which can either be a withdrawal node or a deposit node”. As an al-
ternative over trees with this layout, we could use ( . . .account, (transaction,
{ })) and (bank.branch.client. account, (transaction, { })) among others.

c. ( ∗.bank, ( ∗.client, {cno, account})) expresses “in every subtree rooted at a
bank node, a client node can be uniquely identified by its child attribute cno
together with its child node account”. Over trees with this layout the same
is expressed, among others, by ( , ( .client, {cno, account})).

d. ( ∗.transaction, ( , ∅)) expresses “Every transaction node has at most one
child node”.

3.1 Expressive and Tractable Fragments of XML Keys

In order to take advantage of XML keys effectively it becomes necessary to
reason about them efficiently. Central to this task is the implication problem.
Let Σ ∪ {ϕ} be a finite set of XML keys in a fragment C. We say that Σ
(finitely) implies ϕ, denoted by Σ |=(f) ϕ, if and only if every (finite) XML
tree T that satisfies all σ ∈ Σ also satisfies ϕ. The (finite) implication problem
for the fragment C is to decide, given any finite set of XML keys Σ ∪ {ϕ} in
C, whether Σ |=(f) ϕ. If Σ is a finite set of XML keys in C let Σ∗

(f) denote its

(finite) semantic closure, i.e., the set of all XML keys (finitely) implied by Σ.
That is, Σ∗

(f) = {ϕ ∈ C | Σ |=(f) ϕ}.

As shown in [7, 8, 15, 16, 11], efficient decision algorithm for the finite impli-
cation problem of XML keys exist for the following fragments.

K1 = {(Q, (Q′, {P1, . . . , Pk})) | k ≥ 1, Q,Q′ ∈ PL{., ∗} and P1, . . . , Pk ∈ PL{.}}

K2 = {(Q, (Q′, {P1, . . . , Pk})) | k ≥ 0, Q,Q′ ∈ PL{., ∗} and P1, . . . , Pk ∈ PL{.}}

K3 = {(Q, (Q′, {P1, . . . , Pk})) | k ≥ 1, Q,Q′ ∈ PL{., , ∗} and P1, . . . , Pk ∈ PL{., }}

Note that the fragment K2 includes the fragment K1 plus structural XML
keys with context and target paths in PL{., ∗}. The fragment K3 is defined us-
ing a more expressive path language than K1 which allows the specification of
single-label wildcards. Thus, it also strictly includes the fragment K1. Regard-
ing the relationship between K2 and K3, it is clear that there are XML keys in
K2 which are not in K3 and vice versa. For instance, the key (ε, ( , {name}))
belongs to K3 and does not belong to K2. On the contrary, the structural key
(bank.branch.client.account.transaction, (deposit, ∅)) belongs to K2 and does
not belong to K3.



In this work, we study a fragment of XML keys which strictly includes K1,
K2 and K3. We define it as follows.

Max-Keys = { (Q, (Q′, {P1, . . . , Pk})) | k ≥ 0, Q,Q′, P1, . . . , Pk ∈ PL{., , ∗}

but such that Q′ or P1, . . . , Pk ∈ PL{., }}

It is easy to find examples which belong to Max-Keys and do not belong to
any of the fragments K1, K2 and K3. Take for instance (ε, ( , { ∗.name})) and
( ∗.transaction, ( , ∅)) from Example 4.

The fragment Max-Keys of XML keys provides XML engineers with an en-
hanced ability to capture interesting properties of XML data. These are useful
for several tasks in XML practice such as data integration, cleaning and valida-
tion among others. In the remainder of the article we will establish that despite
its expressiveness, the fragment of Max-Keys can be reasoned about efficiently.

For the time being, we assume the number of key paths k to be ≥ 1 for
all Max-Keys. We consider the case of Max-Keys with empty sets of key paths
latter in Subsection 5.4.

The plan to verify the tractability of Max-Keys is as follows: First we will
characterize the implication problem associated with Max-Keys in terms of a
finite axiomatization. We can speak of the implication problem as the finite and
unrestricted implication problems coincide for the fragment of Max-Keys. The
axiomatization provides complete insight into the interaction of Max-Keys. This
insight allows us to characterize the implication problem by constructive graph
properties. This characterization enables us to establish a compact, low-degree
polynomial-time algorithm for deciding implication.

4 Inference Rules for Max-Keys

Our goal is to establish a finite axiomatization for the implication of Max-Keys.
To begin with we assemble a set of inference rules that allow us to derive new
Max-Keys from given ones. Derivability with respect to a set R of inference
rules, denoted by the binary relation ⊢R between a set of Max-Keys and a single
Max-Key, can be defined analogously to the notion in the relational data model
[1, pp. 164-168].

We aim to find a set of inference rules which is sound and complete for
the implication of Max-Keys. A set R of inference rules is sound (respectively,
complete) for the implication of Max-Keys if for all finite sets Σ of Max-Keys we
have Σ+

R
⊆ Σ∗ (respectively, Σ∗ ⊆ Σ+

R
). Herein, Σ+

R
= {ϕ | Σ ⊢R ϕ} denotes

the syntactic closure of Σ under derivation by R.
Table 1 shows the set of inference rules for the implication of Max-Keys.

Each inference rule has the form premises
conclusion

condition with premises from Max-
Keys. That is, the path expressions used in the premises are always chosen such
that the respective XML key lies in the fragment of Max-Keys.

We prove below the soundness of the subnodes rule since it provides valuable
insight that explains out definition of Max-Keys. The soundness of the remaining



(Q, (Q′, S))

(Q, (Q′, S ∪ {P}))
Q′

or P∈PL{., }

(Q, (ǫ, S))
(prefix-epsilon) (epsilon)

(Q, (Q′.Q′′, S))

(Q.Q′, (Q′′, S))

(Q, (Q′, S ∪ {ǫ, P}))

(Q, (Q′, S ∪ {ǫ, P.P ′}))
(target-to-context) (superkey)

(Q, (Q′.P, {P ′}))

(Q, (Q′, {P.P ′}))
at least 2 of Q′, P, P ′ ∈ PL{., }

(Q, (Q′, S))

(Q′′, (Q′, S))
Q′′⊆Q

(subnodes) (context-path-containment)

(Q, (Q′.P, {ǫ, P ′}))

(Q, (Q′, {ǫ, P.P ′}))
at least 2 of Q′, P, P ′ ∈ PL{., }

(Q, (Q′, S))

(Q, (Q′′, S))
Q′′⊆Q′

(subnodes-epsilon) (target-path-containment)

(Q, (Q′, {P.P1, . . . , P.Pk})),
(Q.Q′, (P, {P1, . . . , Pk}))

(Q, (Q′.P, {P1, . . . , Pk}))

(Q, (Q′, S ∪ {P}))

(Q, (Q′, S ∪ {P ′}))
P ′⊆P

(interaction) (key-path-containment)

Table 1. A Finite Axiomatization for Max-Keys.

rules can be shown using similar arguments. Therefore we omit those lengthy,
but not very difficult proofs. For comparing, we also refer to our soundness proofs
in [15, 16, 11] for the special cases of the smaller fragments K1, K2 and K3 of
XML keys.

Lemma 1. The subnodes rule is sound for the implication of XML keys in the
fragment of Max-Keys.

Proof. Suppose an XML tree T violates (Q, (Q′, {P.P ′})). Then there is some
node q ∈ [[Q]] and there are some nodes q′1, q

′
2 ∈ q[[Q′]] such that q′1 6= q′2 and

such that there exist p′1 ∈ q′1[[P.P
′]] and p′2 ∈ q′2[[P.P

′]] where p′1 =v p′2 holds.
By definition of concatenation, there exist p1 ∈ q′1[[P ]] and p2 ∈ q′2[[P ]] such that
p′1 ∈ p1[[P

′]] and p′2 ∈ p2[[P
′]] hold. Since T is a tree and due to the condition

of the subnodes rule Q′ or P.P ′ is a PL{., } expression (i.e. has no variable-
length wildcards), it holds that q′1 is neither an ancestor nor a descendant of q′2.
Consequently, p1 6= p2 (since otherwise q′1 = q′2). This, however, means that T
also violates (Q, (Q′.P, {P})). ⊓⊔

In the proof of the previous lemma we have made an interesting observation:
If we allow the use of variable-length wildcards in the target and key paths at
the same time, then we could have a pair of distinct target nodes q′1 and q′2 so
that one is an ancestor of the other one. This would allow us to build a counter-



example tree to demonstrate that the subnodes rule is not sound for such an
extended fragment of Max-Keys.

5 Axiomatic Characterization of Max-Keys Implication

Our goal is to demonstrate that the set R of inference rules is also complete for
the implication of Max-Keys. Completeness means we need to show that for an
arbitrary finite set Σ ∪ {ϕ} of Max-Keys with ϕ /∈ Σ+

R
there is some XML tree

T that satisfies all members of Σ but violates ϕ. That is, T is a counter-example
tree for the implication of ϕ by Σ.

The general proof strategy is as follows: For T to be a counter-example we
i) require a context node qϕ with (at least) two target nodes q′ϕ that have value
equal key paths qϕ1 , . . . , q

ϕ
kϕ
, and ii) must for every context node qσ not have

target nodes q′σ with value equal key nodes qσ1 , . . . , q
σ
kσ
, for each σ ∈ Σ. Such a

counter-example tree exists if and only if these two conditions can be satisfied
simultaneously.

In a fist step, we represent ϕ as a finite node-labeled tree TΣ,ϕ, which we
call the mini-tree. Then, we reverse the edges of the mini-tree and add to the
resulting tree downward edges for certain members of Σ. This final digraph GΣ,ϕ

is called the witness network. A downward edge resulting from σ tells us that
under each source node there can be at most one target node. Now, if we can
reach the target node of ϕ from its context node along a dipath then there is no
counter-example tree T . In other words, if we satisfy condition ii) above, then
we cannot satisfy condition i). Otherwise, we can construct a counter-example
tree T .

5.1 Witness Networks

Let Σ ∪ {ϕ} be a finite set of Max-Keys. Let LΣ,ϕ denote the set of all labels
ℓ ∈ L that occur in path expressions of members in Σ ∪ {ϕ}, and fix a label
ℓ0 ∈ E − LΣ,ϕ. First we transform the path expressions occurring in ϕ into
simple path expressions in PL{.}. For that purpose we replace each single-label
wildcard “ ” by ℓ0 and each variable-length wildcard “ ∗” by a sequence of l+1
labels ℓ0, where l is the maximum number of consecutive single-label wildcards
that occurs in any Max-Key in Σ ∪{ϕ}. This transformation turns Qϕ into Oϕ,
Q′

ϕ into O′
ϕ, and each Pϕ

i into Oϕ
i for i = 1, . . . , kϕ. The path expressions after

the transformation do not contain any more wildcards (neither single-label nor
variable-length ones).

The proper choice of the integer l is essential for the later construction. In
particular, if there are no occurrences of single-label wildcards in the Max-Keys
under consideration, then l = 0 and we just replace each variable-length wildcard
“ ∗” by one ℓ0.

To continue with our construction, let p be an Oϕ-path from a node rϕ to
a node qϕ, let p′ be an O′

ϕ-path from a node r′ϕ to a node q′ϕ and, for i =
1, . . . , kϕ, let pi be a Oϕ

i -path from a node rϕi to a node xϕ
i , such that the paths



p, p′, p1, . . . , pkϕ
are mutually node-disjoint. From the paths p, p′, p1, . . . , pkϕ

we
obtain the mini-tree TΣ,ϕ by identifying the node r′ϕ with qϕ, and by identifying
each of the nodes rϕi with q′ϕ.

The marking of the mini-tree TΣ,ϕ is a subset M of the node set of TΣ,ϕ: if
for all i = 1, . . . , kϕ we have Qϕ

i 6= ε, then M consists of the leaves of TΣ,ϕ, and
otherwise M consists of all descendant nodes of q′ϕ in TΣ,ϕ.

We use mini-trees to calculate the impact of Max-Keys in Σ on a possible
counter-example tree for the implication of ϕ by Σ. To distinguish Max-Keys
that have an impact from those that do not, we introduce the notion of appli-
cability. Intuitively, when a Max-Key is not applicable, then we do not need to
satisfy it in a counter-example tree as it does not require all its key paths. Let
TΣ,ϕ be the mini-tree of the Max-Key ϕ with respect to Σ, and let M be its
marking. A Max-Key σ is said to be applicable to ϕ if there are nodes wσ ∈ [[Qσ]]
and w′

σ ∈ wσ[[Q
′
σ]] in TΣ,ϕ such that w′

σ[[P
σ
i ]] ∩M 6= ∅ for all i = 1, . . . , kσ. We

say that wσ and w′
σ witness the applicability of σ to ϕ.

We define the witness network GΣ,ϕ of ϕ and Σ as the node-labeled digraph
obtained from TΣ,ϕ as follows: the nodes and node-labels of GΣ,ϕ are exactly
the nodes and node-labels of TΣ,ϕ, respectively. The edges of GΣ,ϕ consist of
the reversed edges from TΣ,ϕ. Furthermore, for each Max-Key σ ∈ Σ that is
applicable to ϕ and for each pair of nodes wσ ∈ [[Qσ]] and w′

σ ∈ wσ[[Q
′
σ]] that

witness the applicability of σ to ϕ we add a directed edge (wσ, w
′
σ) to GΣ,ϕ. We

refer to these additional edges as witness edges while the reversed edges from
TΣ,ϕ are referred to as upward edges of GΣ,ϕ. This is the case since for every
witness wσ and w′

σ the node w′
σ is a descendant of the node wσ in TΣ,ϕ, and

thus the witness edge (wσ, w
′
σ) is a downward edge or loop in GΣ,ϕ.

Example 5. Let us consider the following Max-Keys which were specified by the
database designer for XML trees with the layout of the tree in Figure 1.

ϕ = (ε, (bank. ∗.client.account, {no, kind}))

σ1 = (ε, (bank. , { ∗.account.no}))

σ2 = (bank, ( ∗.client, { .no}))

σ3 = ( ∗.client, (account, {kind}))

Let Σ = {σ1, σ2, σ3}. The left picture of Figure 3 shows the mini-tree TΣ,ϕ

and its marking (note that leaves are marked by ×). The right picture in the
same figure shows its corresponding witness network GΣ,ϕ. Note that all the
Max-Keys in Σ are applicable to ϕ. On the other hand, the Max-Key σ4 =
(ε, (bank.branch.client.account, {no, kind})) is not applicable to ϕ. In fact, σ4

is implied by ϕ since it can be derived by an application of the target-path-
containment rule.

In the following section we will prove the following crucial fact. If q′ϕ is

reachable from qϕ in GΣ,ϕ, then ϕ ∈ Σ+
R
. In other words, if ϕ is not derivable

from Σ, then there is no dipath from qϕ to q′ϕ in GΣ,ϕ.
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5.2 Reachability implies Derivability

The following important lemma holds the key to prove the completeness ofR and
also for our low-degree polynomial time decision algorithm for the implication
problem of Max-Keys.

Lemma 2. Let Σ ∪ {ϕ} be a finite set of Max-Keys. If q′ϕ is reachable from qϕ
in the witness network GΣ,ϕ, then ϕ ∈ Σ+

R
.

Proof (Sketch). Let D denote the simple path in GΣ,ϕ from qϕ to q′ϕ. According
to the definition of the witness network we can assume without loss of generality
that D consists of a sequence π1, . . . , πn+1, n ≥ 1, where for each i = 1, . . . , n,
πi starts with a possibly empty sequence of upward edges followed by a single
witness edge (wσi

, w′
σi
) where wσi

and w′
σi

witness the applicability of σi to
ϕ, and πn+1 is a possibly empty sequence of upward edges. Moreover, we can
assume that qϕ, w

′
σ1
, . . . , w′

σn
form a proper descendant chain, q′ϕ is a proper

descendant of w′
σn−1

and w′
σn

is a descendant node of q′ϕ in TΣ,ϕ. This situation
is illustrated by the witness network GΣ,ϕ in Figure 3.

We now describe a series of assumptions which we use to show that the
existence of the witness edges inD implies the existence of a witness edge (qϕ, q

′
ϕ)

which results from a Max-Key σ in Σ+.

1. The final witness edge in D can be replaced by a witness edge that ends
in q′ϕ. That is, we can assume without loss of generality that πn+1 is in-
deed an empty sequence and w′

σn
= q′ϕ where the set of key paths of σn is

{Pϕ
1 , . . . , Pϕ

kϕ
}.



2. If there is a witness edge (wσ, w
′
σ) in the witness network GΣ,ϕ that cor-

responds to the applicability of some σ ∈ Σ+
R

to ϕ, then for each node w
between wσ and w′

σ in TΣ,ϕ there is also a witness edge (w,w′
σ) in GΣ,ϕ

which corresponds to the applicability of some σ′ ∈ Σ+
R

to ϕ. In our exam-
ple in Figure 3, this indicates the existence of a witness edge from the first
ℓ0 node (from top to bottom) to the client node.

3. If there is a witness edge (wσ1
, w′

σ1
) and another witness edge (w′

σ1
, q′ϕ),

then there is also a witness edge (wσ1
, q′ϕ). In our example in Figure 3, this

indicates the existence of a witness edge from the db node to the account
node.

The strategy to prove the previous assumptions consists on showing that
for each new witness edge D′ obtained by virtue of the assumptions, there is a
corresponding inference by R of a Max-Key σ′ that corresponds to the witness
edge D′. For the sake of presentation, we omit this lengthy but not very difficult
part of the proof.

From Assumption 1 and 2, we can conclude that there is a simple path D′ in
GΣ,ϕ from qϕ to q′ϕ. In fact, D′ consists of the sequence π′

1, . . . , π
′
n where each

π′
i with 1 ≤ i ≤ n consists of a single witness edge (wσi

, w′
σi
) where w′

σi
= wσi+1

for i = 1, . . . , n− 1 and where wσ1
= qϕ and w′

σn
= q′ϕ. Again, qϕ, w

′
σ1
, . . . , w′

σn

form a proper descendant chain.
At this stage we can use Assumption 3 repeatedly to conclude that there

is a single witness edge D0 = (qϕ, q
′
ϕ) in GΣ,ϕ resulting from the Max-Key

σ = (Qσ, (Q
′
σ, {P

ϕ
1 , . . . , Pϕ

kϕ
})) in Σ+

R
that is applicable to ϕ. Due to the ap-

plicability of σ to ϕ we conclude that Qϕ ⊆ Qσ and Q′
ϕ ⊆ Q′

σ. We can now
apply the context-path-containment and target-path-containment rule to obtain
(Qϕ, (Q

′
ϕ, {P

ϕ
1 , . . . , Pϕ

kϕ
})) ∈ Σ+

R
, which proves the lemma. ⊓⊔

The next example illustrates how the edges of the witness network encode
an inference by R.

Example 6. Let ϕ and Σ be as in Example 5. Recall that the right picture of
Figure 3 shows the corresponding witness network. Thus by Lemma 2, Σ ⊢R ϕ.
Next, we show the actual derivation by R. We first apply the superkey rule to
σ3 to derive σ′

3 = ( ∗.client, (account, {no, kind})) (cf. with Assumption 1 in the
proof of Lemma 2). We also apply the superkey rule to σ1 and σ2 to derive σ′

1 =
(ε, (bank. , { ∗.account.no, ∗.account.kind})) and σ′

2 = (bank, ( ∗.client, { .no,
.kind})), respectively. Then we apply the target-to-context rule to σ′

2 to de-
rive σ′′

2 = (bank. ∗, (client, { .no, .kind})) (cf. with Assumption 2 in the proof
of Lemma 2). It is easy to see that by successively applying the context-path-
containment, target-path-containment and key-path-containment rules, we can
derive from σ′

1, σ
′′
2 and σ′

3 the following Max-Keys, respectively.

α1 = (ε, (bank. ∗, {client.account.no, client.account.kind}))

α2 = (bank. ∗, (client, {account.no, account.kind}))

α3 = (bank. ∗.client, (account, {no, kind}))



Finally, by application of the interaction rule to α2 and α3 we obtain α4 =
(bank. ∗, (client.account, {no, kind})), and again by application of the interac-
tion rule to α1 and α4 we derive ϕ (cf. with Assumption 3 in the proof of
Lemma 2).

5.3 Completeness

We have now the tools to prove the completeness of our set of inference rules.

Theorem 1. The inference rules in Table 1 are complete for the implication of
Max-Keys.

Proof (Sketch). Let Σ ∪ {ϕ} be a finite set of Max-Keys such that ϕ /∈ Σ+
R
. We

will show that ϕ /∈ Σ∗ by constructing a finite XML tree T which satisfies all
Max-Keys in Σ but does not satisfy ϕ. Since ϕ /∈ Σ+

R
we know by Lemma 2 that

there is no path from qϕ to q′ϕ in the witness network GΣ,ϕ. Let u denote the
bottom-most descendant node of qϕ in TΣ,ϕ that is reachable from qϕ in GΣ,ϕ.
Note that u is a proper ancestor of q′ϕ in TΣ,ϕ since otherwise u and thus q′ϕ
were reachable from qϕ in GΣ,ϕ.

Let T0 denote a copy of the path from r to u in TΣ,ϕ, and T1, T2 denote two
node-disjoint copies of the subtree of TΣ,ϕ rooted at u. We want that a node of T1

and a node of T2 become value equal precisely when they are copies of the same
marked node in TΣ,ϕ. For attribute and text nodes this is achieved by choosing
string values accordingly, while for element nodes we can adjoin a new child
node with a label from L − (LΣ,ϕ ∪ {ℓ0}) to achieve this. The counter-example
tree T is obtained from T0, T1, T2 by identifying the leaf node u of T0 with the
root nodes of T1 and T2. We conclude that T violates ϕ, and our construction
guarantees that T satisfies all σ ∈ Σ. ⊓⊔

The construction of the counter example tree T in the proof of Theorem 1 is
illustrated by the following example.

Example 7. Let σ1, σ2 and ϕ be as in Example 5. The corresponding mini-tree
TΣ,ϕ, witness network GΣ,ϕ and counter-example tree T for the implication of
ϕ by Σ = {σ1, σ2} are shown in Figure 4. Note that T satisfies σ1 and σ2, and
violates ϕ.

5.4 Dealing with Structural Max-Keys

Max-Keys with empty sets of key paths behave quite differently than Max-Keys
with non empty key paths. The former ones identify nodes (within certain sub-
trees) by a unique context path. The latter ones identify nodes (within subtrees)
by unique data values.

Let us consider Max-Keys of the form α = (Q, (Q′, ∅)) whose key path Q′

may contain single-label wildcards, but no variable-length wildcards. It is not
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hard to see that the inference rules in Table 1 still hold for this case. Using the
superkey rule we can derive α′ = (Q, (Q′, { ∗})) from α.

Thus when constructing the witness network GΣ,ϕ for some Σ and ϕ in
Max-Keys such that α belongs to Σ then we will replace α by α′. As we have
demonstrated above the counter-example tree T constructed for ϕ and the re-
sultant Σ′ would satisfy Σ′ but violate ϕ. However, it is easy to validate that by
our construction T satisfies not only α′ but even α. So T would actually satisfy
Σ but violate ϕ, thus showing that Σ does not imply ϕ.

If ϕ has an empty set of key paths, then we will construct the witness net-
work GΣ,ϕ′ where ϕ′ = (Qϕ, (Q

′
ϕ, {

∗}))). As we have demonstrated above the
counter-example tree T constructed for ϕ′ and Σ would satisfy Σ but violate
ϕ′. Consequently, it would also violate ϕ (as ϕ implies ϕ′), thus showing that Σ
does not imply ϕ.

Finally, note that ϕ′ = (Qϕ, (Q
′
ϕ, {

∗}))) does not generally imply ϕ. A
counter-example tree T can be easily constructed from merging two copies of
TΣ,ϕ′ on all nodes other than q′ϕ′ and then assigning two different string values
to the two copies of q′ϕ′ . Then T would satisfy ϕ′ but violate ϕ.

6 A Decision Algorithm for Max-Keys Implication

We will now design a low-degree polynomial time decision algorithm for the
implication problem of Max-Keys. It is based on the following characterization
of the implication problem in terms of the reachability problem of nodes in the
witness network.



Theorem 2. Let Σ ∪ {ϕ} be a finite set of Max-Keys. We have Σ |= ϕ if and
only if q′ϕ is reachable from qϕ in the witness network GΣ,ϕ.

Proof. Assume that q′ϕ is not reachable from qϕ in GΣ,ϕ. Then we can generate
a counter-example tree for the implication of ϕ by Σ as described in the proof
of Theorem 1. It follows that Σ does not imply ϕ.

On the contrary, assume now that q′ϕ is indeed reachable from qϕ in GΣ,ϕ.
We conclude by Lemma 2 that ϕ is implied by Σ. ⊓⊔

Theorem 2 tells us that we can decide implication by constructing the wit-
ness network and testing reachability in GΣ,ϕ by applying well known search
techniques. This establishes a surprisingly compact algorithm.

Algorithm 1 Decision Algorithm for the Implication Problem of Max-Keys

Input: finite set of Max-Keys Σ ∪ {ϕ}
Output: yes, if Σ |= ϕ; no, otherwise
1: Construct GΣ,ϕ for Σ and ϕ;
2: if q′ϕ is reachable from qϕ in GΣ,ϕ then return yes;

else return no; end if

The presentation of Algorithm 1 to decide the implication of Max-Keys re-
mains the same as Algorithm 4.2 in [15] to decide the implication of the strictly
less expressive fragment K1 of XML keys. However, the construction of the wit-
ness network GΣ,ϕ, which is central to both algorithms, requires considerably
more effort for the more expressive fragment of Max-Keys. This effort results in
an slight increase in the worst-case time complexity of the algorithm. Neverthe-
less, the simplicity of Algorithm 1 enables us to conclude that the implication
of Max-Keys can be decided in low-degree polynomial time in the worst case.

6.1 Implementation and Complexity Analysis of Algorithm 1

In this subsection we discuss our implementation of Algorithm 1 and analyze its
theoretical complexity.

Data Structures. We need data structures suitable to represent mini-trees and
witness networks. The obvious candidates are adjacency matrices and adjacency
lists [2]. Since the algorithm does not require frequent determination of edge
existence, we choose the latter in order to minimize the memory requirements.
In our implementation, a mini-tree TΣ,ϕ is represented by using a list L of length
n = |V | where V is the vertex set of TΣ,ϕ. Each element ei ∈ L is represented by
an object of type vertexEle that has a pointer to the adjacency list of the i-th
vertex vi in some fixed enumeration of the vertices in V , a pointer to the data
component of the vertex vi, and a pointer to the next element ei+1 in the list.
In turn, the data component of a vertex vi is represented by an object of type



nodeEle, and an element in the adjacency list of a vertex vi is represented by
an object of type edgeEle. An object of type nodeEle has an id component that
uniquely identifies vi, a label component with the label of vi, a flag visited, and
a type component with the type E (element), A (attribute) or S (PCDATA)
of vi. An object of type edgeEle has a pointer to an object of type vertexEle
and a pointer to the next object of type edgeEle in the adjacency list. Witness
networks are represented likewise.

Implementation. We implemented Step 1 of Algorithm 1, using the following
strategy:

i. Construct TΣ,ϕ;
ii. Determine the marking of TΣ,ϕ;
iii. Reverse all edges of TΣ,ϕ;
iv. For each σ ∈ Σ, add the edge (wσ, w

′
σ) to TΣ,ϕ whenever wσ and w′

σ witness
the applicability of σ to ϕ.

Substep (i) involves constructing the mini-tree TΣ,ϕ using the data structures
defined at the beginning of this section. Note that we can find a label ℓ0 that is
not among the labels used in the XML keys in Σ ∪{ϕ} in time

∑

σi∈Σ |σi|+ |ϕ|,
where |σi| and |ϕ| denote the sum of the lengths of all path expressions in σi

and ϕ, respectively. Once we have got a suitable label, ℓ0, TΣ,ϕ can be built in
time O(|ϕ| × l), where |ϕ| is the sum of the lengths of all path expressions in ϕ
and l is the maximum number of consecutive single-label wildcards that occurs
in Σ. Note that the mini-tree TΣ,ϕ has at most (|ϕ| × l) + 1 nodes.

Regarding Substep (ii), if Pϕ
i 6= ε we can determine the marking of the mini-

tree TΣ,ϕ by simply traversing the list L marking the nodes whose adjacency
list is empty. Note that those nodes correspond to leaves in TΣ,ϕ. Otherwise, we
mark all nodes in the adjacency list of the element ei in L that represents q′ϕ,
and recursively mark all descendants of those nodes. This step takes O(|ϕ| × l)
time.

Assuming that the adjacency list of a vertex vi lists the vertices vj such that
there is an edge from vi to vj . Substep (iii) involves the generation of a new
adjacency list which corresponds to TΣ,σ with all its directed edges reverted.
Again, this takes time O(|ϕ| × l).

Substep (iv) requires, for each σ ∈ Σ, to evaluate w′
σ[[P

σ
i ]] for i = 1, . . . , kσ,

for all w′
σ ∈ wσ[[Q

′
σ]] and all wσ ∈ [[Qσ]]. Note that a query of the form v[[Q]] is

a Core XPath query and can be evaluated on a node-labeled three T in order
O(|T | × |Q|) time [13]. Hence, we can evaluate w′

σ[[P
σ
i ]] for all i = 1, . . . , kσ in

time O(|ϕ|× l×|σ|). Since [[Qσ]] and wσ[[Q
′
σ]] contain at most |ϕ|× l nodes each,

this step can be executed in O((|ϕ| × l)3 × |σ|) time for each σ. Hence, we need
O(||Σ|| × (|ϕ| × l)3) time to generate GΣ,ϕ, where ||Σ|| denotes the sum of all
sizes |σ| for σ ∈ Σ.

Finally, Step 2 of Algorithm 1 can be implemented by applying a depth-first
search algorithm to GΣ,ϕ with root qϕ. This algorithm works in time linear in
the number of edges of GΣ,ϕ [17]. Thus reachability can be decided in O(|ϕ+l|2).



Complexity. The following result is a consequence of the previous observations.

Theorem 3. If Σ∪{ϕ} is a finite set of Max-Keys, then the implication problem
Σ |= ϕ can be decided in O(||Σ|| × (|ϕ| × l)3) time, where |ϕ| is the sum of the
lengths of all path expressions in ϕ, ||Σ|| denotes the sum of all sizes |σ| for
σ ∈ Σ, l is the maximum number of consecutive single-label wildcards that occur
in Σ.

It is important to note the blow-up in the size of the counter-example with
respect to ϕ. This is due to the occurrence of consecutive single-label wildcards.
If the number l is fixed in advance, then Algorithm 1 establishes a worst-case
time complexity that is quadratic in the input. In particular, if the input consists
of XML keys in K1, as studied in [15, 12], then the worst-case time complexity
of Algorithm 1 is that of the algorithm dedicated to XML keys in K1 only [15].

Remark 1. If we simply replace each variable-length wildcard “ ∗” by the single-
label ℓ0 and not by a sequence of l+1 labels ℓ0, then Theorem 2 does not hold.
To see this, consider

ϕ = ( ∗.bank, (branch.client, { .no}))

σ1 = ( .bank, (branch, {client. .no}))

σ2 = ( ∗.bank.branch, (client, { .no}))

Let Σ = {σ1, σ2}. A simple replacement of “ ∗” by ℓ0 results in the witness
network shown on the first (from the left) picture in Figure 5. But then by
Lemma 2, Σ would imply ϕ, which is clearly incorrect as shown by the counter-
example tree on the second picture in Figure 5.

7 Applications and Performance Evaluation

In this section we present the results regarding the application and performance
evaluation of our decision algorithm for the finite implication problem of Max-
Keys. We also compare these results against the results obtained in [12] for a
strictly less expressive fragment of XML keys. We start by describing in Sub-
section 7.1 the construction of the sets of XML keys used in our experiments.
These set of keys correspond to actual XML documents which are also described
in this section, and latter used in the experiments regarding the application of
XML key reasoning in the context of XML document validation. These latter
experiments are reported in Subsection 7.3. The experiments regarding the per-
formance of the decision algorithm for the implication of Max-Keys are presented
in Subsection 7.2.

The running times reported in Subsection 7.2 were obtained in a fairly stan-
dard Intel Core i7 2.8 GHz machine, with 4 GB of RAM, running a Linux kernel
2.6.32. We compiled our C++ implementation of the algorithms using the stan-
dard g++ compiler from the GNU Compiler Collection 4.6.3. The experiments
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in Subsection 7.3 were run on a cluster of 160 nodes of type Xeon E5-2680(i7)
with 128 GB and 16 cores per node (2.68 GHZ) running Linux RHEL 6.1. The
reason for using this facility was to save time on the experiments concerning the
validation of XML documents, in particular this was required for the validation
of the big XML document of 3.2GB corresponding to the Chilean electoral role.
The use of these nodes allowed us to load in RAM the whole DOM representation
of each XML tree tested in the experiments (including the one corresponding
to the Chilean electoral role), thus simplifying the task of writing a validation
algorithm to test our ideas. It should be noted that this task is accessory to this
paper as it was only used to showcase the benefits of using XML key reasoning
in this context. In this work, we are not concerned with parallelization chal-
lenges. In fact, we ran these jobs with a standard sequential algorithm, having
one instance of an XML document and corresponding set of keys to be validated
per node. We simply run several experiments (over different documents) at once
by submitting different jobs (i.e., by using a separated node for each validation
instance).

We remind the reader that, as stated in the introduction, all the data sets
used in our experiments as well as the full set of results and the binary codes
of the implemented algorithms are publicly available at http://emir-munoz.

github.com/xml-constraints. To the best of our knowledge, this is the first
time that large sets of non-trivial XML keys for real XML documents are made
publicly available. Our hope is that this contribution facilitates further research
in the area.



7.1 Defining the Data Sets: XML keys and XML Documents

We use a collection of XML documents from [22] plus a large XML document
(padron.xml) that holds the publicly available Chilean electoral roll6. A charac-
terization of these XML documents is shown in Table 2. From [22] we use the
documents 321gone.xml and yahoo.xml (auction data), dblp.xml (bibliographic
information on CS), nasa.xml (astronomical data), SigmodRecord.xml (articles
from SIGMOD Record), and mondial-3.0.xml (world geographic database).

Table 2. XML Documents.

Doc ID Document No. of
Elements

No. of
Attributes

Size Max.
Depth

Average
Depth

doc1 padron.xml 119,235,504 39,745,398 3.2 GB 5 4.06667
doc2 321gone.xml 311 0 24 KB 5 3.76527
doc3 yahoo.xml 342 0 25 KB 5 3.76608
doc4 dblp.xml 29,494 3,247 133.9 MB 6 2.90228
doc5 nasa.xml 476,646 56,317 25 MB 8 5.58314
doc6 SigmodRecord.xml 11,526 3,737 478 KB 6 5.14107
doc7 mondial-3.0.xml 22,423 47,423 1.9 MB 5 3.59274

In order to generate realistic XML keys for the experiments regarding the
performance of the decision algorithm in Subsection 7.2 as well as to use the
same sets of XML keys for the experiments involving documents validation in
Subsection 7.3, we follow a strategy that is grounded in the XML documents
described above. We explain this strategy using the XML document with the
Chilean electoral roll as a model. The layout of this document is illustrated in
Figure 6. For clarity of presentation we have translated the labels of the nodes
from Spanish to English and simplified the structure by collapsing the first name,
father’s surname and mother’s surname descendant nodes of the name element
node into just one text node. We start by defining a series of keys which are
appropriate in the context of this XML document. We list some of them together
with an informal interpretation for reference.

a. (ε, (commune, {person}))
“A person cannot be enrolled in more than one commune”.

b. (ε, (commune, {person.id}))
“Similar to (a), but not equivalent”.

6 The Chilean electoral roll can be downloaded in PDF format from the official site
http://www.servel.cl of the Electoral Commission of Chile. The XML version used
in this paper was extracted from the PDF document by Cristian Bravo-Lillo and
can be obtained from http://manzanamecanica.org/2012/11/padron_electoral_

en_xml.html



c. (commune, (person, {id}))
“A person node can be identified by its id attribute respectively to a commune
node”.

d. (commune.person, (polling, {circumscription, district}))
“A polling node can be identified by its child nodes circumscription and
district node respectively to a person node”.

e. (commune.person, (polling, ∅))
“A person node can only have one child node with label polling”.

f. (commune.person.polling, (circumscription, ∅))
“A polling node can only have one child node with label circumscription”.

g. ( . . , (circumscription, ∅))
“Idem (f) over trees with the layout of the tree in Figure 6”.

h. (ε, ( , { ∗.id}))
“Idem (b) over trees with the layout of the tree in Figure 6”.

i. ( . , ( ∗.polling, { .S}))
“A polling node can be identified by the value of its descendant text nodes
relatively to the nodes at level two in the XML tree”.

j. ( . , ( , { ∗.S})) “Every node at level three can be identified by its descendant
text nodes respectively to a node at level two. In trees with the layout of the
tree in Figure 6, this means that for instance the name of a person cannot
coincide with the address which in turn cannot coincide with the circumscrip-
tion nor with the district”.

Note that the XML keys in (a)–(d) are in the strictly less expressive fragment
K1 of XML keys studied in [12] while the remaining keys are not. All the XML
keys in the previous list are however in the fragment of Max-Keys covered in
this work. Also note that the XML keys in (e)–(g) are structural keys and that,
over trees with the layout of the tree in Figure 6, the XML keys in (i) and (j)
cannot be expressed without allowing wildcards in the key paths.

E
A

E

E E

E

E

A

S E

S S

S

E

E

E E

E

E

A

S E

S S

S

Punta Arenas

A

district

gender

60

16.300.400−9

Pablo Neruda Balmaceda 655

Magallanes

male

...
......

...
...

db

name

id
A
id gender

19.123.344−1

Gabriela Mistral Colon 766

female

Magallanes 60

addressname

scription
circum−

district

name address

scription
circum−

polling polling

personperson

commune

Fig. 6. Chilean electoral roll.



We then define new (implied) XML keys, by successively applying the infer-
ence rules for Max-Keys from Table 1 to the previously defined set of XML keys.
For instance, by applying the superkey rule to the XML key in (h) we can ob-
tain the new XML keys (ε, ( , { ∗.id, ∗.gender})), (e, ( , { ∗.id, ∗.name})) and
(e, ( , { ∗.id, ∗.gender, ∗.name})) among others.

Finally, we define sets Σ ∪ {ϕ} of Max-Keys such that the keys in Σ are
applicable to ϕ and Σ 6|= ϕ. The idea is to test the algorithm also against sets
of Max-Keys Σ ∪ {ϕ} for which it is not only the case that ϕ is not implied
by Σ, but also it is non trivial for the algorithm to determine this fact. The
following steps allow us to obtain sets of Max-Keys with these characteristics:
a) define a Max-Key ϕ, b) build its corresponding witness network G∅,ϕ, c) add
several witness edges to G∅,ϕ taking care of keeping q′ϕ not reachable from qϕ,
and d) define Max-Keys corresponding to those witness edges. As an example,
let us take ϕ = (ε, (commune.person.polling, {district})). The corresponding
witness network G∅,ϕ is shown in the first picture of Figure 7. From the witness
edges A1, A2 and A3 shown in the second picture of Figure 7, we can derive the
following set Σ of Max-Keys among others:

σ1 = (commune, (person, {polling.district}))

σ2 = ( , ( , { ∗.district}))

σ3 = ( ∗.person, (polling, {district}))

σ4 = ( ∗.person, ( , { ∗.district}))

σ5 = ( , ( ∗.polling, { }))

σ6 = ( , ( . , {district}))

where the keys σ1 and σ2 correspond to the witness edge A1, the keys σ3 and
σ4 correspond to the witness edge A2, and the keys σ5 and σ6 correspond to the
witness edge A3.
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Fig. 7. Witness networks for a non-implied key.

The processes described in this section were used to produce a robust col-
lection of Max-Keys as well as a collection of K1 keys to thoroughly test the



performance of the decision algorithm for the implication problem of Max-Key
and for the implication problem of K1 keys, respectively. The results are reported
in the next section.

7.2 Performance of the Decision Algorithm for Max-Keys

In order to have a baseline to determine how much the increase in expressibility
of the considered class of Max-Keys affects the performance of the decision al-
gorithm, we also include measures of the performance of the decision algorithm
in [12] which is optimized for deciding implication of the strictly less expressive
fragment K1 of XML keys from [15].

The results regarding running times for deciding the implication of K1 keys
and Max-Keys are shown in Figures 8(a) and 8(b). In both figures, the x-axis
corresponds to the number of keys in Σ, and the y-axis corresponds to the
average running time required to decide whether Σ implies a given key ϕ. More
precisely, let time(Σ,ϕ) be the running time required to decide Σ |= ϕ and
let Φ be a set of XML keys such that Σ ∩ Φ = ∅, the reported running time
corresponds to

(
∑

ϕi∈Φ time(Σ,ϕi)
)

/|Φ|. In our experiments the sets Φ were
composed of 10 fixed XML keys. We tested the scalability of the algorithms by
adding, in each iteration, 10 new XML keys to the corresponding Σ sets. Each
of the experiments was executed 5 times. The resulting error bars are included
in the graphs. They are consistent with time variations commonly produced by
the scheduling of the operating system and the use of the time() function to
measure the experiments [21].
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Fig. 8. Performance of the Decision Algorithms for the Implication of XML Keys.

We consider Σ sets composed by (i) only absolute keys (“abs”), (ii) only
relative keys (“rel”) or (iii) both types of keys (“mix”). Given that an input
key ϕ can be either absolute or relative, we have a total of six test cases. The
performance shown by the “abs-rel” curves is slightly degraded due to the fact
that, in general, the algorithm needs to traverse more nodes to determine whether



q′ϕ is reachable from qϕ. This is consistent with the way in which the witness
networks are defined.

Finally, we present in Figure 9 the aggregate results. For a small set Σ with
about 10 XML keys, the execution takes 0.2ms in average, whereas for a large
set of about 180 XML keys, the execution takes around 4ms in the worst case.
Thus, we can conclude that both decision algorithms are efficient in practice
and both scale well. In particular, the price to pay for the added expressibility
provided by the Max-Keys is in the order of just 3ms for a considerable big set
of 180 Max-Keys.
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7.3 Applying XML Key Reasoning to Document Validation

Fast algorithms for the validation of XML documents against keys are crucial
to ensure the consistency and semantic correctness of data stored in databases
or exchanged between applications [5]. In this section we propose to use our
decision algorithm to compute non-redundant cover sets of Max-Keys. As shown
in the experiments this has the potential to significantly reduce the time needed
to validate XML documents against sets of Max-Keys. In our experiments we
validate XML documents as a whole, starting from scratch. This is clearly useful
for instance for tasks such as data cleaning, and it is enough to showcase a
concrete example in which our algorithm for the implication of XML keys can
be sucessfully used in practice. Nevertheless we note that the central case of
incremental validation, which is left out of the scope of this paper, can also
benefit from this idea.

Cover Sets for XML Keys. We define the concept of cover set of XML keys
following the notion given in [19] for functional dependencies in the relational
model. Thus, two sets Σ1 and Σ2 of XML keys are a cover of one another if



they imply exactly the same set of XML keys, i.e., if Σ∗
1 = Σ∗

2 . A set Σc of
XML keys is a non-redundant cover if none of its proper subsets is a cover for it.
This is the case if there is no key ϕ in Σc such that Σc − {ϕ} |= ϕ. Note that a
non-redundant cover set Σc of a given set Σ of XML keys has potentially fewer
keys than Σ and at the same time, every tree T that satisfies all the keys in Σc,
also satisfies all the keys in the original set Σ.

Thus, given a set Σ of Max-Keys, we can use our decision algorithm to
compute a non-redundant cover set Σc for it and then, provided it has fewer keys
than the original set Σ, validate the target XML document against Σc instead
of Σ. As shown in our experiments, this can potentially result in enormous time
savings.

It is important to note that a set Σ can contain more than one non-redundant
cover set and there can also exist non-redundant cover sets that are not included
in Σ. In this work we only consider cover sets that are included in Σ.

Validation against Non-redundant Covers. The aim is to determine the vi-
ability of computing non-redundant cover sets to reduce the overall time required
to validate XML documents against sets of Max-Keys.

Validating an XML document against a set of XML keys involves checking,
for every XML key in the set, whether the document satisfies such key. For
this task, we use a semi-näıve algorithm that parses the XML document into
a DOM tree and then evaluates the XML keys on the resulting tree, by using
XPath queries to express their context, target and key paths. We do not use
sophisticated validation algorithms such as [9, 18] because they are not suitable
in its current form to validate Max-Keys. An adaptation of such kind of algo-
rithms for Max-Keys is a complex task which is out of the scope of this work
and non essential to prove our point, that is to prove that reasoning about XML
keys brings important benefits in this context. Furthermore, the proposed op-
timization based on non-redundant cover sets is independent of the particular
algorithm used for XML key validation.

Tests Results. Given a set Σ of Max-Keys, we compute a non-redundant cover
set Σc by simply checking for every key ϕi ∈ Σ, whether Σ−{ϕi} |= ϕi (this step
is done by our decision algorithm for the implication problem of Max-Keys). If
we find a key ϕi that is implied by Σ−{ϕi}, we eliminate it from Σ and continue
checking the remaining keys against the resulting set Σ − {ϕi}. For comparison
purpose, we also compute the set C of all non redundant covers that are strictly
contained in Σ. To obtain C, we first check every singleton subset of Σ, then we
check every subset of Σ of cardinality two, and so on till we have checked every
strict subset of Σ. Note that once we find a non-redundant cover set Σc ⊂ Σ,
we can automatically discard every Si ⊂ Σ such that Σc ⊆ Si.

The results obtained from the computation of non-redundant cover sets are
summarized in Table 3, were time(Σc) denotes the time in milliseconds required
to compute a non-redundant cover Σc ⊂ Σ, time(C) denotes the time in millisec-
onds needed to compute the set C of all non-redundant covers contained in Σ,



and min(Σc) and max(Σc) denote the cardinality of the smallest non-redundant
cover and the cardinality of the biggest non-redundant cover contained in Σ, re-
spectively.

Table 3. Computation of Non-redundant Covers.

XML document |Σ| |Σc| time(Σc) |C| time(C) min(Σc) max(Σc)

padron

doc1 10 5 4.041 8 2896.630 5 5

321gone & yahoo

doc2 & doc3 13 8 5.388 1 22792.900 8 8

DBLP

doc4 12 7 5.879 1 9424.210 7 7

nasa

doc5 12 7 5.469 2 10417.200 7 7

SigmodRecord

doc6 12 6 4.783 2 10633.400 6 6

mondial

doc7 12 6 3.078 12 9460.690 6 7

Figure 10 shows the optimization achieved by pre-calculating non-redundant
cover sets during the validation process of the XML documents in Table 2. In
both plots the x-axis represent the documents and the y-axis represent the run-
ning time in milliseconds. We use a separate plot for doc1 due to the difference
in scale, and consequently in validation time, with respect to the others XML
documents. Also due to differences in scale, we had to truncate the bars repre-
senting the validation time for doc4, doc5 and doc7 against the full set of XML
keys. The actual time required for those validations is indicated on top of the
corresponding bars.

This results clearly indicate that the running time required to compute a non-
redundant cover set is just a tiny fraction of the overall running time required
to validate a single XML document against a key. It also confirms that the
proposed optimization of the validation process, based on the pre-calculation of
non-redundant covers, can significantly reduce the time required for this task.

Significant time savings are achieved in the validation of doc1, doc4, doc5
and doc7. This coincides with the largest tested documents. For instance, while
it takes 38 minutes to validate the XML document padron.xml (doc1) against 10
Max-Keys, the validation against the best cover in C only requires 20 minutes.

For reference, we list next the set Σ of Max-Keys used for the validation
experiments with the document padron.xml. Note that the nodes given, father
and mother, which are not included in the simplified tree in Figure 6, refer to
the child nodes of the name node in the actual structure of the XML document
padron.xml. The labels father and mother refer to the father’s surname and
the mother’s surname, respectively. The keys used in the validation experiments
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with the others XML documents tested in this work, can be found online as
indicated at the beginning of this section. For the sake of presentation, we omit
them here.

1. (ε, (commune, {name.given, name.father, name.mother}))
2. (ε, (commune, { ∗, person}))
3. (ε, (commune, {name.given, name.father, name.mother, person}))
4. (ε, ( , {person}))
5. (ε, (commune, {person.id}))
6. (ε, (commune, {person.id, person.gender}))
7. (ε, (commune, { .id, .gender, .name}))
8. (ε, (commune, {person.id, person.gender, person.name.given, person.name.father,

person.name.mother}))
9. (ε, ( ∗, {person.id, person.gender, person.name, person.address}))

10. (ε, (commune, {person.id, person.gender, person.name.given, person.name.father,

person.name.mother, person.address}))

The result of computing all non-redundant covers included in Σ is a collec-
tion C with 8 sets, shown in Table 4. The last set contains simpler keys (i.e.,
with lower length and fewer single-label and variable-length wildcards), which
results in less complex XPath queries and the minimum time required for valida-
tion. Specifically, the more complex Max-Keys like (ε, (comuna, { ∗, person}))
involve 345 commune nodes, that in total compress 13, 248, 351 person (com-
plex) nodes with various element and attribute children. Moreover, if we discard
the absolute Max-Key with a variable-length wildcard in its target path (which
involves 3, 239, 791 nodes), we can reduce the validation time to six minutes.
Indeed, when more nodes are selected by the target path and more complex
nodes by the key paths, then it becomes more time consuming to compute the
corresponding value intersection among all pairs of elements.



Table 4. Non-redundant covers used in the validation experiments with padron.xml

(ε, (commune, {name.given, name.father, name.mother, person}))
(ε, ( , {person}))
(ε, (commune, { .id, .gender, .name}))
(ε, ( ∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {person.id, person.gender, person.name.given,

person.name.father, person.name.mother, person.address}))

(ε, (commune, {name.given, name.father, name.mother, person}))
(ε, ( , {person}))
(ε, (commune, { .id, .gender, .name}))
(ε, ( ∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {person.id, person.gender, person.name.given,

person.name.father, person.name.mother}))

(ε, (commune, {name.given, name.father, name.mother, person}))
(ε, ( , {person}))
(ε, (commune, {person.id, person.gender}))
(ε, (commune, { .id, .gender, .name}))
(ε, ( ∗, {person.id, person.gender, person.name, person.address}))

(ε, (commune, {name.given, name.father, name.mother, person}))
(ε, ( , {person}))
(ε, (commune, {person.id}))
(ε, (commune, { .id, .gender, .name}))
(ε, ( ∗, {person.id, person.gender, person.name, person.address}))

(ε, (commune, {name.given, name.father, name.mother}))
(ε, ( , {person}))
(ε, (commune, { .id, .gender, .name}))
(ε, ( ∗, {person.id, person.gender, person.name, person.address}))
(ε, (commune, {person.id, person.gender, person.name.given,

person.name.father, person.name.mother, person.address}))

(ε, (commune, {name.given, name.father, name.mother}))
(ε, ( , {person}))
(ε, (commune, { .id, .gender, .name}))
(ε, (commune, {person.id, person.gender, person.name.given,

person.name.father, person.name.mother}))
(ε, ( ∗, {person.id, person.gender, person.name, person.address}))

(ε, (commune, {name.given, name.father, name.mother}))
(ε, ( , {person}))
(ε, (commune, {person.id, person.gender}))
(ε, (commune, { .id, .gender, .name}))
(ε, ( ∗, {person.id, person.gender, person.name, person.address}))

(ε, (commune, {name.given, name.father, name.mother}))
(ε, ( , {person}))
(ε, (commune, {person.id}))
(ε, (commune, { .id, .gender, .name}))
(ε, ( ∗, {person.id, person.gender, person.name, person.address}))



8 Conclusion

Our contribution is two-fold. Firstly, we introduced an expressive fragment of
XML keys (Max-Keys) that is sufficiently flexible to advance XML data pro-
cessing in important areas of XML application such as consistency manage-
ment, data integration, query optimization and view maintenance. The flexi-
bility results from the right balance between expressiveness and efficiency of
maintenance. Secondly, we have shown through extensive experimentation that
reasoning about this expressive fragment of XML keys can be done efficiently
in practice, and scales well. Our results promote the use of XML keys to real-
world XML practice, where a little more semantics makes applications a lot more
effective.

Additionally, we have shown that our contribution to the problem of deciding
implication is not only of interest for the problem itself but has immediate conse-
quences for other perennial tasks in XML database management. As an example
we have studied the problem of validating an XML document against a set of
XML keys. We have presented an optimization method for this validation that
computes a non-redundant cover for the set of XML keys given as input so that
satisfaction only needs to be checked for the keys in this cover. This can reduce
the number of keys significantly, and our experiments show that enormous time
savings can be achieved in practice. This holds true even though the validation
procedure is able to decide value equality among element nodes with complex
content as this is required for the XML keys studied here (and distinguishes
them from the keys defined in XML Schema). We would like to emphasize that
the use of non-redundant covers does not depend on the particular choice of the
XML fragment but can be tailored to any class of XML constraints for which
the implication problem can be solved efficiently.

The experiments with large sets of non-trivial XML keys and large XML
documents provide a good platform (and also pinpoint the need) for further
research in the area. This can go into various directions. XML practice might well
warrant the study of other classes of XML keys that require different paradigms
to select and compare nodes, or specify restrictions. It would be interesting to
investigate the interaction of XML keys with schema specification languages
and other classes of database constraints, including functional, multivalued and
inclusion dependencies. This is likely to be a challenging task as already observed
and illustrated by examples in previous work [8]: keys can non-trivially interact
with content models and thus behave differently under such specifications.

It would also be interesting to explore other practical applications of the
decision algorithm for the implication problem in areas such as optimization of
XPath queries, XML constraint mining, and XML design. The broad area in
which XML keys can be applied, as indicated in several parts of this article,
warrant further studies.
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